Advertisements
Advertisements
Question
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
Solution
According to the question,
\[\frac{dy}{dx} = x + 3y - 1\]
\[\Rightarrow \frac{dy}{dx} - 3y = x - 1\]
\[\text{ Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get }\]
\[P = - 3 \]
\[Q = x - 1\]
Now,
\[I . F . = e^{- \int3dx} = e^{- 3x} \]
So, the solution is given by
\[y \times I . F . = \int Q \times I . F . dx + C\]
\[ \Rightarrow y e^{- 3x} = \int\left( x - 1 \right) e^{- 3x} dx + C\]
\[ \Rightarrow y e^{- 3x} = x\int e^{- 3x} dx - \int\left[ \frac{d}{dx}\left( x \right)\int e^{- 3x} dx \right]dx - \int e^{- 3x} dx + C\]
\[ \Rightarrow y e^{- 3x} = - \frac{1}{3}x e^{- 3x} + \frac{1}{3}\int e^{- 3x} dx - \int e^{- 3x} dx + C\]
\[ \Rightarrow y e^{- 3x} = - \frac{1}{3}x e^{- 3x} - \frac{1}{9} e^{- 3x} + \frac{1}{3} e^{- 3x} + C\]
\[ \Rightarrow y = - \frac{1}{3}x - \frac{1}{9} + \frac{1}{3} + C e^{3x} \]
\[ \Rightarrow y = - \frac{1}{3}x + \frac{2}{9} + C e^{3x} \]
Since the curve passes throught the origin, it satisfies the equation of the curve.
\[ \Rightarrow 0 = - 0 + \frac{2}{9} + C e^0 \]
\[ \Rightarrow C = - \frac{2}{9}\]
Putting the value of C in the equation of the curve, we get
\[y = - \frac{1}{3}x + \frac{2}{9}\left( 1 - e^{3x} \right)\]
\[ \Rightarrow y + \frac{1}{3}x = \frac{2}{9}\left( 1 - e^{3x} \right)\]
\[ \Rightarrow 3\left( 3y + x \right) = 2\left( 1 - e^{3x} \right)\]
APPEARS IN
RELATED QUESTIONS
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
y ex/y dx = (xex/y + y) dy
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
y dx – x dy + log x dx = 0
Solve the differential equation xdx + 2ydy = 0
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
Solve: ydx – xdy = x2ydx.