English

The Rate of Increase in the Number of Bacteria in a Certain Bacteria Culture is Proportional to the Number Present. - Mathematics

Advertisements
Advertisements

Question

The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.

Sum

Solution

Let the original count of bacteria be N and the count of bacteria at any time be P.
Given: \[\frac{dP}{dt}\alpha P\]
\[\Rightarrow \frac{dP}{dt} = aP\]
\[ \Rightarrow \frac{dP}{P} = adt\]
\[ \Rightarrow \log\left| P \right| = at + C . . . . . \left( 1 \right)\]
Now,
\[P = N\text{ at }t = 0 \]
\[\text{Putting }P = N\text{ and }t = 0\text{ in }\left( 1 \right), \text{ we get }\]
\[\log\left| N \right| = C \]
\[\text{Putting }C = \log\left| N \right|\text{ in }\left( 1 \right), \text{ we get }\]
\[\log\left| P \right| =\text{ at }+ \log\left| N \right|\]
\[ \Rightarrow \log\left| \frac{P}{N} \right| =\text{ at }. . . . . \left( 2 \right)\]
According to the question,
\[\log\left| \frac{3N}{N} \right| = 5a\]
\[ \Rightarrow a = \frac{1}{5}\log\left| 3 \right| = \frac{1}{5} \times 1 . 0986 = 0 . 21972\]
\[\text{ Putting }a = 0 . 21972\text{ in }\left( 2 \right),\text{ we get }\]
\[\log\left| \frac{P}{N} \right| = 0 . 21972t . . . . . \left( 3 \right) \]
\[ \Rightarrow e^{0 . 21972t} = \frac{P}{N} . . . . . \left( 4 \right)\]
\[\text{ Putting }t = 10\text{ in }\left( 4 \right)\text{ to find the bacteria after 10 hours, we get }\]
\[ e^{0 . 21972 \times 10} = \frac{P}{N}\]
\[ \Rightarrow e^{2 . 1972} = \frac{P}{N}\]
\[ \Rightarrow \frac{P}{N} = 9\]
\[ \Rightarrow P = 9N\]
To find the time taken when the number of bacteria becomes 10 times of the number of initial population, we have
\[P = 10N\]
\[ \therefore \log\left| \frac{10N}{N} \right| = \frac{1}{5}t\log 3\]
\[ \Rightarrow t = \frac{5 \log 10}{\log 3}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.11 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.11 | Q 6 | Page 134

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


\[\sqrt{a + x} dy + x\ dx = 0\]

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

(ey + 1) cos x dx + ey sin x dy = 0


\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


(x + y) (dx − dy) = dx + dy


\[xy\frac{dy}{dx} = x^2 - y^2\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


(y2 − 2xy) dx = (x2 − 2xy) dy


\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Find the differential equation whose general solution is

x3 + y3 = 35ax.


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×