Advertisements
Advertisements
Question
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Solution
x3 + y3 = 35ax ...(i)
Differentiating w.r.t. x, we get
`3x^2 + 3y^2 dy/dx = 35a` ...(ii)
Substituting (ii) in (i), we get
`x^3 + y^3 = (3x^2 + 3y^2 dy/dx)x`
∴ `x^3 + y^3 = 3x^3 + 3x*y^2 dy/dx`
∴ `2x^3 - y^3 +3xy^2dy/dx =0`, which is the required differential equation.
RELATED QUESTIONS
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
(sin x + cos x) dy + (cos x − sin x) dx = 0
x cos2 y dx = y cos2 x dy
tan y dx + sec2 y tan x dy = 0
y (1 + ex) dy = (y + 1) ex dx
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
y2 dx + (x2 − xy + y2) dy = 0
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
Solve the differential equation:
dr = a r dθ − θ dr
Solve
`dy/dx + 2/ x y = x^2`
`xy dy/dx = x^2 + 2y^2`
If `y = log_2 log_2(x)` then `(dy)/(dx)` =
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of: