Advertisements
Advertisements
Question
`xy dy/dx = x^2 + 2y^2`
Solution
`xy dy/dx = x^2 + 2y^2`
∴ `dy/dx = x^2 + (2y^2)/ (xy)` …(i)
Put y = tx ...(ii)
Differentiating w.r.t. x, we get
`dy/dx = t + x dt/dx` ...(iii)
Substituting (ii) and (iii) in (i), we get
`t + x dt/dx = (x^2 + 2t^2 x^2)/ (x(tx))`
∴ `t + x dt/dx = (x^2 (1+2t^2))/(x^2t)`
∴ `x dt/dx (1+2t^2)/t - t = (1+ t^2)/t`
∴ `t/(1+t^2) dt = 1/x dx`
Integrating on both sides, we get
`1/2 int (2t)/(1+t^2) dt = int dx/x`
∴ `1/2 log|1 + t^2| = log |x| + log |c|`
∴ log |1 + t2 | = 2 log |x| + 2log |c|
= log |x2 | + log |c2|
∴ log |1 + t2 | = log |c2 x2|
∴ 1 + t2 = c2x2
∴ `1 + y^2/x^2 = c^2x^2`
∴ x2 + y2 = c2 x4
APPEARS IN
RELATED QUESTIONS
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
3x2 dy = (3xy + y2) dx
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.