English

X 2 D Y D X = X 2 − 2 Y 2 + X Y - Mathematics

Advertisements
Advertisements

Question

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

Solution

We have, 
\[ x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x^2 - 2 y^2 + xy}{x^2}\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x^2 - 2 v^2 x^2 + x^2 v}{x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = 1 - 2 v^2 + v\]
\[ \Rightarrow x\frac{dv}{dx} = 1 - 2 v^2 \]
\[ \Rightarrow \frac{1}{1 - 2 v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1}{1 - 2 v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1}{1^2 - \left( \sqrt{2}v \right)^2} = \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2\sqrt{2}}\log \left| \frac{1 + \sqrt{2}v}{1 - \sqrt{2}v} \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \frac{1 + \sqrt{2}v}{1 - \sqrt{2}v} \right| = 2\sqrt{2}\log \left| x \right| + 2\sqrt{2} \log C\]
\[ \Rightarrow \log \left| \frac{1 + \sqrt{2}v}{1 - \sqrt{2}v} \right| = \log \left| \left( Cx \right)^{2\sqrt{2}} \right|\]
\[ \Rightarrow \frac{1 + \sqrt{2}v}{1 - \sqrt{2}v} = \left( Cx \right)^{2\sqrt{2}} \]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \frac{x + \sqrt{2}y}{x - \sqrt{2}y} = \left( Cx \right)^{2\sqrt{2}} \]
\[\text{ Hence, }\frac{x + \sqrt{2}y}{x - \sqrt{2}y} = \left( Cx \right)^{2\sqrt{2}}\text{ is the required solution }.\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.09 [Page 83]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.09 | Q 8 | Page 83

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

\[x^2 \left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + y^4 = 0\]

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


C' (x) = 2 + 0.15 x ; C(0) = 100


\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

\[\frac{dy}{dx} = \sin^2 y\]

\[x\frac{dy}{dx} + y = y^2\]

(1 − x2) dy + xy dx = xy2 dx


tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

\[x\frac{dy}{dx} = x + y\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×