Advertisements
Advertisements
Question
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Solution
Let the given curve be y = f(x). Suppose P(x,y) be a point on the curve. Equation of the tangent to the curve at P is \[Y - y = \frac{dy}{dx}(X - x)\] , where (X, Y) is the arbitrary point on the tangent.
Putting Y=0 we get,
\[0 - y = \frac{dy}{dx}(X - x)\]
\[\text{ Therefore, }X - x = - y\frac{dx}{dy}\]
\[ \Rightarrow X = x - y\frac{dx}{dy}\]
\[\text{ Therefore, cut off by the tangent on the }x -\text{ axis }= x - y\frac{dx}{dy}\]
\[\text{ Given, }x - y\frac{dx}{dy} = 4y\]
\[\text{ Therefore, }- y\frac{dx}{dy} = 4y - x\]
\[ \Rightarrow \frac{dx}{dy} = \frac{x - 4y}{y}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x - 4y} . . . . . . . . (1)\]
this is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx} \text{ in }(1) \text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{vx}{x - 4vx}\]
\[\text{ Therefore, }v + x\frac{dv}{dx} = \frac{v}{1 - 4v}\]
\[ \Rightarrow \frac{xdv}{dx} = \frac{v}{1 - 4v} - v = \frac{4 v^2}{1 - 4v}\]
\[ \Rightarrow \frac{1 - 4v}{v^2}dv = 4\frac{dx}{x}\]
Integrating on both sides we get,
\[\int\frac{1 - 4v}{v^2}dv = 4\int\frac{dx}{x}\]
\[\text{ Therefore, }\int\frac{dv}{v^2} - 4\int\frac{dv}{v} = 4\int\frac{dx}{x}\]
\[ \Rightarrow - \frac{1}{v} - 4 \log v = 4 \log x + \log c\]
\[ \Rightarrow - \frac{1}{v} = 4 log x + log c + 4 log v\]
\[ \Rightarrow 4 \log(xv) + \log c = - \frac{1}{v}\]
putting the value of v we get
\[4 log(x \times \frac{y}{x}) + log c = - \frac{x}{y}\]
\[ \Rightarrow 4 log(y) + log c = - \frac{x}{y}\]
\[ \Rightarrow \log ( y^4 c) = - \frac{x}{y}\]
\[ \Rightarrow y^4 c = e^{- \frac{x}{y}} \]
APPEARS IN
RELATED QUESTIONS
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
(y + xy) dx + (x − xy2) dy = 0
y ex/y dx = (xex/y + y) dy
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`