English

Differential Equation D Y D X + Y = 2 , Y ( 0 ) = 3 Function Y = E−X + 2 - Mathematics

Advertisements
Advertisements

Question

Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2

Sum

Solution

We have,

\[y = e^{- x} + 2..............(1)\]

Differentiating both sides of (1) with respect to x, we get

\[\frac{dy}{dx} = - e^{- x} \]

\[ \Rightarrow \frac{dy}{dx} = - \left( y - 2 \right) ..............\left[\text{Using (1)}\right]\]

\[ \Rightarrow \frac{dy}{dx} + y = 2 \]

It is the given differential equation.

\[y = e^{- x} + 2\]  satisfies the given differential equation; hence, it is a solution.

Also, when \[x = 0, y = e^0 + 2 = 1 + 2 = 3,\text{ i.e. }y(0) = 3\]

Hence, \[y = e^{- x} + 2\] is the solution to the given initial value problem.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.04 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.04 | Q 5 | Page 28

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\frac{dy}{dx} = \tan^{- 1} x\]


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

\[5\frac{dy}{dx} = e^x y^4\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

\[x\frac{dy}{dx} + \cot y = 0\]

\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

(1 − x2) dy + xy dx = xy2 dx


tan y dx + sec2 y tan x dy = 0


Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} = \sec\left( x + y \right)\]

Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

`dy/dx + y` = 3


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


The function y = ex is solution  ______ of differential equation


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×