English

The Differential Equation X D Y D X − Y = X 2 , Has the General Solution - Mathematics

Advertisements
Advertisements

Question

The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution

Options

  • y − x3 = 2cx

  • 2y − x3 = cx

  • 2y + x2 = 2cx

  • y + x2 = 2cx

MCQ

Solution

2y − x3 = cx

 

We have,
\[x\frac{dy}{dx} - y = x^2\]
\[\Rightarrow \frac{dy}{dx} - \frac{1}{x}y = x^2 \]
\[\text{ Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get }\]
\[P = - \frac{1}{x} \]
\[Q = x^2 \]
Now, 
\[I . F . = e^{- \int\frac{1}{x}dx} = e^{- \log\left| x \right|} \]
\[ = e^{log\left| \frac{1}{x} \right|} \]
\[ = \frac{1}{x}\]
\[y \times I . F = \int x^2 \times I . Fdx + C\]
\[ \Rightarrow y\frac{1}{x} = \int x^2 \times \frac{1}{x}dx + C\]
\[ \Rightarrow y\frac{1}{x} = \int xdx + C\]
\[ \Rightarrow y\frac{1}{x} = \frac{x^2}{2} + C\]
\[ \Rightarrow 2y - x^3 = Cx\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - MCQ [Page 142]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
MCQ | Q 32 | Page 142

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

xy dy = (y − 1) (x + 1) dx


dy + (x + 1) (y + 1) dx = 0


\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

`dy/dx + y` = 3


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×