English

The Differential Equation of the Ellipse X 2 a 2 + Y 2 B 2 = C is - Mathematics

Advertisements
Advertisements

Question

The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is

Options

  • \[\frac{y "}{y'} + \frac{y'}{y} - \frac{1}{x} = 0\]

  • \[\frac{y "}{y'} + \frac{y'}{y} + \frac{1}{x} = 0\]

  • \[\frac{y "}{y'} - \frac{y'}{y} - \frac{1}{x} = 0\]

  • none of these

MCQ

Solution

\[\frac{y "}{y'} + \frac{y'}{y} - \frac{1}{x} = 0\]

 

We have,
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C . . . . . \left( 1 \right)\]
Differentiating with respect to x, we get
\[\frac{2x}{a^2} + \frac{2y}{b^2}y' = 0\]
\[ \Rightarrow \frac{x}{a^2} + \frac{y}{b^2}y' = 0 . . . . . \left( 2 \right)\]
Again differentiating with respect to x, we get
\[ \Rightarrow \frac{1}{a^2} + \frac{1}{b^2} \left( y' \right)^2 + \frac{y}{b^2}y'' = 0 . . . . . \left( 3 \right)\]
Multiplying throughout by x, we get
\[\frac{x}{a^2} + \frac{x}{b^2} \left( y' \right)^2 + \frac{xy}{b^2}y'' = 0 . . . . . \left( 4 \right)\]
\[\text{ Subtracting }\left( 2 \right)\text{ from }\left( 4 \right),\text{ we get }\]
\[\frac{1}{b^2}\left[ x \left( y' \right)^2 + xyy'' - yy' \right] = 0 \]
\[ \Rightarrow x \left( y' \right)^2 + xyy'' - yy' = 0\]
Dividing both sides by xyy', we get
\[\frac{y'}{y} + \frac{y''}{y'} - \frac{1}{x} = 0\]
\[\Rightarrow \frac{y''}{y'} + \frac{y'}{y} - \frac{1}{x} = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - MCQ [Page 141]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
MCQ | Q 17 | Page 141

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x


\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[5\frac{dy}{dx} = e^x y^4\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

\[x\frac{dy}{dx} + y = y^2\]

\[x\frac{dy}{dx} + \cot y = 0\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


\[xy\frac{dy}{dx} = x^2 - y^2\]

Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


The solution of the differential equation y1 y3 = y22 is


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Find the differential equation whose general solution is

x3 + y3 = 35ax.


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

`dy/dx + 2xy = x`


Solve the differential equation xdx + 2ydy = 0


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


Solve: ydx – xdy = x2ydx.


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×