English

Solution of the Differential Equation D Y D X + Y X (A) X (Y + Cos X) = Sin X + C (B) X (Y − Cos X) = Sin X + C (C) X (Y + Cos X) = Cos X + C (D) None of These - Mathematics

Advertisements
Advertisements

Question

Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is

Options

  • x (y + cos x) = sin x + C

  • x (y − cos x) = sin x + C

  • x (y + cos x) = cos x + C

  • none of these

MCQ

Solution

x (y + cos x) = sin x + C

 

We have,
\[\frac{dy}{dx} + \frac{y}{x} = \sin x\]
\[ \Rightarrow \frac{dy}{dx} + \frac{1}{x}y = \sin x . . . . . \left( 1 \right)\]
\[\text{ Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get }\]
\[P = \frac{1}{x} \]
\[Q = \sin x\]
Now, 
\[I . F . = e^{\int\frac{1}{x}dx} = e^{log\left| x \right|} \]
\[ = x\]
\[\text{ Therefore, integration of }\left( 1 \right) \text{ is given by }\]
\[y \times I . F . = \int x^2 \times I . F . dx + C\]

\[ \Rightarrow yx = x\int\sin x dx - \int\left[ \frac{d}{dx}\left( x \right)\int\sin x dx \right]dx + C\]
\[ \Rightarrow yx = - x \cos x + \int\cos x dx + C\]
\[ \Rightarrow yx + x \cos x = \sin x + C\]
\[ \Rightarrow x\left( y + \cos x \right) = \sin x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - MCQ [Page 141]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
MCQ | Q 18 | Page 141

RELATED QUESTIONS

The differential equation of the family of curves y=c1ex+c2e-x is......

(a)`(d^2y)/dx^2+y=0`

(b)`(d^2y)/dx^2-y=0`

(c)`(d^2y)/dx^2+1=0`

(d)`(d^2y)/dx^2-1=0`


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

xy = log y + C :  `y' = (y^2)/(1 - xy) (xy != 1)`


Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


The number of arbitrary constants in the particular solution of a differential equation of third order is


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


\[\frac{dy}{dx} = \left( x + y \right)^2\]


(x + y − 1) dy = (x + y) dx


(x2 + 1) dy + (2y − 1) dx = 0


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


x2 dy + (x2 − xy + y2) dx = 0


\[\frac{dy}{dx} + 2y = \sin 3x\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]


Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×