English

The Solution of the Differential Equation X Dx + Y Dy = X2 Y Dy − Y2 X Dx, is - Mathematics

Advertisements
Advertisements

Question

The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is

Options

  • x2 − 1 = C (1 + y2)

  • x2 + 1 = C (1 − y2)

  • x3 − 1 = C (1 + y3)

  • x3 + 1 = C (1 − y3)

MCQ

Solution

x2 − 1 = C (1 + y2)

 

We have,

x dx + y dy = x2y dy − y2x dx

\[\Rightarrow \left( x + x y^2 \right)dx = \left( x^2 y - y \right)dy\]

\[ \Rightarrow \frac{x}{\left( x^2 - 1 \right)}dx = \frac{y}{\left( 1 + y^2 \right)}dy\]

\[ \Rightarrow \frac{2x}{2\left( x^2 - 1 \right)}dx = \frac{2y}{2\left( 1 + y^2 \right)}dy\]

Integrating both sides, we get

\[\frac{1}{2}\int\frac{2y}{\left( 1 + y^2 \right)}dy = \frac{1}{2}\int\frac{2x}{\left( x^2 - 1 \right)}dx\]

\[ \Rightarrow \frac{1}{2}\log\left| \left( 1 + y^2 \right) \right| = \frac{1}{2}\log\left| \left( x^2 - 1 \right) \right| - \frac{1}{2}\log\left| C \right|\]

\[ \Rightarrow \log\left| \left( 1 + y^2 \right) \right| = \log\left| \left( x^2 - 1 \right) \right| - \log\left| C \right|\]

\[ \Rightarrow \log\left| \left( 1 + y^2 \right) \right| = \log\left| \left( \frac{x^2 - 1}{C} \right) \right|\]

\[ \Rightarrow 1 + y^2 = \frac{x^2 - 1}{C}\]

\[ \Rightarrow C\left( 1 + y^2 \right) = x^2 - 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - MCQ [Page 142]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
MCQ | Q 30 | Page 142

RELATED QUESTIONS

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Solve the differential equation `dy/dx -y =e^x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

xy = log y + C :  `y' = (y^2)/(1 - xy) (xy != 1)`


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


The number of arbitrary constants in the general solution of differential equation of fourth order is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[\frac{dy}{dx} = \left( x + y \right)^2\]


cos (x + y) dy = dx


(x3 − 2y3) dx + 3x2 y dy = 0


x2 dy + (x2 − xy + y2) dx = 0


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


Solution of differential equation xdy – ydx = 0 represents : ______.


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


The solution of differential equation coty dx = xdy is ______.


Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.


Find the general solution of the differential equation:

`log((dy)/(dx)) = ax + by`.


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×