Advertisements
Advertisements
Question
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
Options
x2 − 1 = C (1 + y2)
x2 + 1 = C (1 − y2)
x3 − 1 = C (1 + y3)
x3 + 1 = C (1 − y3)
Solution
x2 − 1 = C (1 + y2)
We have,
x dx + y dy = x2y dy − y2x dx
\[\Rightarrow \left( x + x y^2 \right)dx = \left( x^2 y - y \right)dy\]
\[ \Rightarrow \frac{x}{\left( x^2 - 1 \right)}dx = \frac{y}{\left( 1 + y^2 \right)}dy\]
\[ \Rightarrow \frac{2x}{2\left( x^2 - 1 \right)}dx = \frac{2y}{2\left( 1 + y^2 \right)}dy\]
Integrating both sides, we get
\[\frac{1}{2}\int\frac{2y}{\left( 1 + y^2 \right)}dy = \frac{1}{2}\int\frac{2x}{\left( x^2 - 1 \right)}dx\]
\[ \Rightarrow \frac{1}{2}\log\left| \left( 1 + y^2 \right) \right| = \frac{1}{2}\log\left| \left( x^2 - 1 \right) \right| - \frac{1}{2}\log\left| C \right|\]
\[ \Rightarrow \log\left| \left( 1 + y^2 \right) \right| = \log\left| \left( x^2 - 1 \right) \right| - \log\left| C \right|\]
\[ \Rightarrow \log\left| \left( 1 + y^2 \right) \right| = \log\left| \left( \frac{x^2 - 1}{C} \right) \right|\]
\[ \Rightarrow 1 + y^2 = \frac{x^2 - 1}{C}\]
\[ \Rightarrow C\left( 1 + y^2 \right) = x^2 - 1\]
APPEARS IN
RELATED QUESTIONS
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The number of arbitrary constants in the general solution of differential equation of fourth order is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
x (e2y − 1) dy + (x2 − 1) ey dx = 0
\[\frac{dy}{dx} = \left( x + y \right)^2\]
cos (x + y) dy = dx
(x3 − 2y3) dx + 3x2 y dy = 0
x2 dy + (x2 − xy + y2) dx = 0
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
Solution of differential equation xdy – ydx = 0 represents : ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
The solution of differential equation coty dx = xdy is ______.
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.