English

The solution of the differential equation ydx + (x + xy)dy = 0 is ______. - Mathematics

Advertisements
Advertisements

Question

The solution of the differential equation ydx + (x + xy)dy = 0 is ______.

Fill in the Blanks

Solution

The solution of the differential equation ydx + (x + xy)dy = 0 is xy = ce–y.

Explanation:

The given differential equation is ydx + (x + xy)dy = 0

⇒ (x + xy)dy = – ydx 

⇒ x(1 + y)dy = – ydx

⇒ `(1 + y)/y  "d"y = - 1/x  "d"x`

Integrating both sides, we get

`int (1 + y)/y  "d"y = - int 1/x "d"x`

⇒ `int(1/y + 1)"d"y = -int 1/x "d"x`

⇒ log y + y = – log x + log c

⇒ log x + log y + log e y = log c

⇒ log(xy . ey) = log c

∴ xy = ce–y 

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise [Page 202]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise | Q 76.(viii) | Page 202

RELATED QUESTIONS

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


Find the differential equation representing the curve y = cx + c2.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Solve the differential equation `dy/dx -y =e^x`


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


Which of the following differential equations has y = x as one of its particular solution?


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is


\[\frac{dy}{dx} + 1 = e^{x + y}\]


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


The solution of differential equation coty dx = xdy is ______.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Find the general solution of the differential equation:

`log((dy)/(dx)) = ax + by`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×