English

If  y=√(sinx+√(sinx+√(sinx+.....∞ ))), then show that dy/dx=cosx/(2y-1) - Mathematics and Statistics

Advertisements
Advertisements

Question

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`

Solution

`y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo)))`

Let  `y=sqrt(sinx+y)`

`y^2=sinx+y `

Differentiat ing w.r.t.x,

`2y.dy/dx=cosx+dy/dx`

`dy/dx=cosx/(2y-1)`

 

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March)

APPEARS IN

RELATED QUESTIONS

Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


How many arbitrary constants are there in the general solution of the differential equation of order 3.


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


The number of arbitrary constants in the particular solution of a differential equation of third order is


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


\[\frac{dy}{dx} + 1 = e^{x + y}\]


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


(1 + y + x2 y) dx + (x + x3) dy = 0


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


\[\frac{dy}{dx} + 2y = \sin 3x\]


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


y = aemx+ be–mx satisfies which of the following differential equation?


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×