English

Solve the Following Differential Equation:- (1 + X2) Dy + 2xy Dx = Cot X Dx - Mathematics

Advertisements
Advertisements

Question

Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx

Sum

Solution

We have,

\[\left( 1 + x^2 \right)dy + 2xy dx = \cot x dx\]

\[ \Rightarrow \frac{dy}{dx} + \frac{2x}{\left( 1 + x^2 \right)}y = \frac{\cot x}{\left( 1 + x^2 \right)}\]

\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]

\[P = \frac{2x}{\left( 1 + x^2 \right)}\]

\[Q = \frac{\cot x}{\left( 1 + x^2 \right)}\]

Now,

\[I.F. = e^{\int\frac{2x}{\left( 1 + x^2 \right)}dx} \]

\[ = e^{\log\left| 1 + x^2 \right|}\]

\[ = 1 + x^2 \]

So, the solution is given by

\[y \times I . F . = \int Q \times I . F . dx + C\]

\[ \Rightarrow y\left( 1 + x^2 \right) = \int\left[ \frac{\cot x}{\left( 1 + x^2 \right)} \times \left( 1 + x^2 \right) \right] dx + C\]

\[ \Rightarrow y\left( 1 + x^2 \right) = \int\cot x dx + C\]

\[ \Rightarrow y\left( 1 + x^2 \right) = \log \left| \sin x \right| + C\]

\[ \Rightarrow y = \left( 1 + x^2 \right)^{- 1} \log \sin x + C \left( 1 + x^2 \right)^{- 1}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 147]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 66.12 | Page 147

RELATED QUESTIONS

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


The differential equation of the family of curves y=c1ex+c2e-x is......

(a)`(d^2y)/dx^2+y=0`

(b)`(d^2y)/dx^2-y=0`

(c)`(d^2y)/dx^2+1=0`

(d)`(d^2y)/dx^2-1=0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.


Solve the differential equation:

`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The number of arbitrary constants in the general solution of differential equation of fourth order is


Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .


x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[\frac{dy}{dx} + 1 = e^{x + y}\]


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


\[\frac{dy}{dx} - y \tan x = e^x\]


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


(x3 − 2y3) dx + 3x2 y dy = 0


\[\frac{dy}{dx} + 2y = \sin 3x\]


\[\frac{dy}{dx} + y = 4x\]


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


The general solution of ex cosy dx – ex siny dy = 0 is ______.


y = aemx+ be–mx satisfies which of the following differential equation?


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.


The solution of differential equation coty dx = xdy is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`


Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×