English

D Y D X + 1 = E X + Y - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} + 1 = e^{x + y}\]

Sum

Solution

We have,

\[\frac{dy}{dx} + 1 = e^{x + y} . . . . . \left( 1 \right)\]

Let `x + y = v`

\[ \Rightarrow 1 + \frac{dy}{dx} = \frac{dv}{dx}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1\]

Then, (1) becomes

\[\frac{dv}{dx} - 1 + 1 = e^v \]

\[ \Rightarrow \frac{dv}{dx} = e^v \]

\[ \Rightarrow e^{- v} dv = dx\]

Integrating both sides, we get

\[\int e^{- v} dv = \int dx\]

\[ \Rightarrow - e^{- v} = x + C\]

\[ \Rightarrow - 1 = e^v \left( x + C \right)\]

\[ \Rightarrow - 1 = \left( x + C \right) e^{x + y}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 146]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 34 | Page 146

RELATED QUESTIONS

The differential equation of the family of curves y=c1ex+c2e-x is......

(a)`(d^2y)/dx^2+y=0`

(b)`(d^2y)/dx^2-y=0`

(c)`(d^2y)/dx^2+1=0`

(d)`(d^2y)/dx^2-1=0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

xy = log y + C :  `y' = (y^2)/(1 - xy) (xy != 1)`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.


If y = etan x+ (log x)tan x then find dy/dx


Solve the differential equation `cos^2 x dy/dx` + y = tan x


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

x (e2y − 1) dy + (x2 − 1) ey dx = 0


cos (x + y) dy = dx


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]


\[\frac{dy}{dx} - y \tan x = e^x\]


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


tan–1x + tan–1y = c is the general solution of the differential equation ______.


y = aemx+ be–mx satisfies which of the following differential equation?


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×