Advertisements
Advertisements
Question
\[\frac{dy}{dx} - y \tan x = e^x\]
Solution
We have,
\[\frac{dy}{dx} - y \tan x = e^x \]
\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]
\[P = - \tan x \]
\[Q = e^x \]
Now,
\[I . F . = e^{\int - \tan x\ dx} \]
\[ = e^{- \log\left| \left( \sec x \right) \right|} \]
\[ = e^{\log\left| \left( \cos x \right) \right|} \]
\[ = \cos x\]
So, the solution is given by
\[y \cos x = \int e^x \cos x dx + C\]
\[ \Rightarrow y \cos\ x = I + C . . . . . . . . . . . \left( 1 \right)\]
Where,
\[ \Rightarrow I = \cos x\int e^x dx - \int\left[ \frac{d}{dx}\left( \cos x \right)\int e^x dx \right]dx\]
\[ \Rightarrow I = \cos x e^x + \int\sin x e^x dx\]
\[ \Rightarrow I = \cos x e^x + \sin x\int e^x dx - \int\left[ \frac{d}{dx}\left( \sin x \right)\int e^x dx \right]dx\]
\[ \Rightarrow I = \cos x e^x + \sin x e^x - \int\cos x e^x dx\]
\[ \Rightarrow I = \cos x e^x + \sin x e^x - I ............\left[\text{From (2)}\right]\]
\[ \Rightarrow 2I = \cos x e^x + \sin x e^x \]
\[ \Rightarrow I = \frac{e^x}{2}\left( \cos x + \sin x \right)\]
\[ \therefore y \cos x = \frac{e^x}{2}\left( \cos x + \sin x \right) + C .............\left[\text{From (1)} \right]\]
APPEARS IN
RELATED QUESTIONS
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Solve the differential equation `cos^2 x dy/dx` + y = tan x
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The number of arbitrary constants in the general solution of differential equation of fourth order is
The number of arbitrary constants in the particular solution of a differential equation of third order is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
(1 + y + x2 y) dx + (x + x3) dy = 0
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
\[\frac{dy}{dx} + y = 4x\]
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
The member of arbitrary constants in the particulars solution of a differential equation of third order as