हिंदी

D Y D X − Y Tan X = E X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} - y \tan x = e^x\]

योग

उत्तर

We have,

\[\frac{dy}{dx} - y \tan x = e^x \]

\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]

\[P = - \tan x \]

\[Q = e^x \]

Now,

\[I . F . = e^{\int - \tan x\ dx} \]

\[ = e^{- \log\left| \left( \sec x \right) \right|} \]

\[ = e^{\log\left| \left( \cos x \right) \right|} \]

\[ = \cos x\]

So, the solution is given by

\[y \cos x = \int e^x \cos x dx + C\]

\[ \Rightarrow y \cos\ x = I + C . . . . . . . . . . . \left( 1 \right)\]

Where,

\[ \Rightarrow I = \cos x\int e^x dx - \int\left[ \frac{d}{dx}\left( \cos x \right)\int e^x dx \right]dx\]

\[ \Rightarrow I = \cos x e^x + \int\sin x e^x dx\]

\[ \Rightarrow I = \cos x e^x + \sin x\int e^x dx - \int\left[ \frac{d}{dx}\left( \sin x \right)\int e^x dx \right]dx\]

\[ \Rightarrow I = \cos x e^x + \sin x e^x - \int\cos x e^x dx\]

\[ \Rightarrow I = \cos x e^x + \sin x e^x - I ............\left[\text{From (2)}\right]\]

\[ \Rightarrow 2I = \cos x e^x + \sin x e^x \]

\[ \Rightarrow I = \frac{e^x}{2}\left( \cos x + \sin x \right)\]

\[ \therefore y \cos x = \frac{e^x}{2}\left( \cos x + \sin x \right) + C .............\left[\text{From (1)} \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 43 | पृष्ठ १४६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


The differential equation of the family of curves y=c1ex+c2e-x is......

(a)`(d^2y)/dx^2+y=0`

(b)`(d^2y)/dx^2-y=0`

(c)`(d^2y)/dx^2+1=0`

(d)`(d^2y)/dx^2-1=0`


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


If y = etan x+ (log x)tan x then find dy/dx


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


The number of arbitrary constants in the general solution of differential equation of fourth order is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


x2 dy + (x2 − xy + y2) dx = 0


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


Solution of differential equation xdy – ydx = 0 represents : ______.


y = aemx+ be–mx satisfies which of the following differential equation?


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×