Advertisements
Advertisements
प्रश्न
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
उत्तर
We have,
\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x + 2y}{x - y} . . . . . \left( 1 \right)\]
Clearly this is a homogeneous equation,
Putting y = vx
\[ \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[\text{Substituting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx}\text{ (1) becomes,} \]
\[v + x\frac{dv}{dx} = \frac{x + 2vx}{x - vx}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{1 + 2v}{1 - v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + 2v}{1 - v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + 2v - v + v^2}{1 - v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v^2 + v + 1}{1 - v}\]
\[ \Rightarrow \frac{1 - v}{v^2 + v + 1}dv = \frac{1}{x}dx\]
\[ \Rightarrow \left[ \frac{- v}{v^2 + v + 1} + \frac{1}{v^2 + v + 1} \right]dv = \frac{1}{x}dx\]
\[ \Rightarrow \left[ - \frac{1}{2} \times \frac{2v + 1 - 1}{v^2 + v + 1} + \frac{1}{v^2 + v + 1} \right]dv = \frac{1}{x}dx\]
\[ \Rightarrow \left[ - \frac{1}{2} \times \frac{2v + 1}{v^2 + v + 1} + \frac{1}{2} \times \frac{1}{v^2 + v + 1} + \frac{1}{v^2 + v + 1} \right]dv = \frac{1}{x}dx\]
\[ \Rightarrow \left[ - \frac{1}{2} \times \frac{2v + 1}{v^2 + v + 1} + \frac{3}{2} \times \frac{1}{v^2 + v + 1} \right]dv = \frac{1}{x}dx\]
\[ \Rightarrow \left[ - \frac{1}{2} \times \frac{2v + 1}{v^2 + v + 1} + \frac{3}{2} \times \frac{1}{v^2 + v + \frac{1}{4} + \frac{3}{4}} \right]dv = \frac{1}{x}dx\]
\[ \Rightarrow \left[ - \frac{1}{2} \times \frac{2v + 1}{v^2 + v + 1} + \frac{3}{2} \times \frac{1}{\left( v + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right]dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[ \Rightarrow \int\left[ - \frac{1}{2} \times \frac{2v + 1}{v^2 + v + 1} + \frac{3}{2} \times \frac{1}{\left( v + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right]dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \frac{1}{2}\int\frac{2v + 1}{v^2 + v + 1}dv + \frac{3}{2}\int\frac{1}{\left( v + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \frac{1}{2}\log \left| v^2 + v + 1 \right| + \frac{3}{2} \times \frac{1}{\frac{\sqrt{3}}{2}} \tan^{- 1} \frac{v + \frac{1}{2}}{\frac{\sqrt{3}}{2}} = \log \left| x \right| + C\]
\[ \Rightarrow - \frac{1}{2}\log \left| \left( \frac{y}{x} \right)^2 + \frac{y}{x} + 1 \right| + \frac{3}{2} \times \frac{1}{\frac{\sqrt{3}}{2}} \tan^{- 1} \frac{\frac{y}{x} + \frac{1}{2}}{\frac{\sqrt{3}}{2}} = \log \left| x \right| + C\]
\[ \Rightarrow - \frac{1}{2}\log \left| \frac{y^2 + xy + x^2}{x^2} \right| + \sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) = \log \left| x \right| + C\]
\[ \Rightarrow - \frac{1}{2}\log \left| y^2 + xy + x^2 \right| + \frac{1}{2}\log \left| x^2 \right| + \sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) = \log \left| x \right| + C\]
\[ \Rightarrow - \frac{1}{2}\log \left| y^2 + xy + x^2 \right| + \log \left| x \right| + \sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) = \log \left| x \right| + C\]
\[ \Rightarrow - \frac{1}{2}\log \left| y^2 + xy + x^2 \right| + \sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) = C\]
\[ \Rightarrow \log \left| y^2 + xy + x^2 \right| - 2\sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) = - 2C\]
\[ \Rightarrow \log \left| y^2 + xy + x^2 \right| = 2\sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) - 2C\]
\[ \Rightarrow \log \left| y^2 + xy + x^2 \right| = 2\sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) + k\text{ Where, }k = - 2C\]
APPEARS IN
संबंधित प्रश्न
Find the differential equation representing the curve y = cx + c2.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The number of arbitrary constants in the particular solution of a differential equation of third order is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
x (e2y − 1) dy + (x2 − 1) ey dx = 0
\[\frac{dy}{dx} + 1 = e^{x + y}\]
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
(1 + y + x2 y) dx + (x + x3) dy = 0
\[\frac{dy}{dx} + y = 4x\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.