Advertisements
Advertisements
प्रश्न
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
उत्तर
`e^(x/y) (1- x/y) + (1 + e^(x/y)) dx/dy = 0`
`Put x = vy
`dx/dy = v + y "dv"/dy`
`:. e^v (1 - v) + (1 + e^v).(v + y "dv"/dy) = 0`
`v(1 + e^v) + y(1 + e^v). (dv)/dy = (v - 1)e^v`
`y(1 + e^v) (dv)/dy = e^v v - e^v - ve^v - v`
`y(1 + e^v) (dv)/(dy) = - (v + e^v)`
`(1 + e^v)/(-(v + e^v)) "dv"/dy = 1/y`
`-int (1 + e^v)/(v + e^v) dv = int 1/y dy`
`log c - log(v + e^v) = log y`
`c/(v + e^v) = y`
`y(v + e^v) = c`
`c = y(v + e^v)`
`c = y(x/y + e^(x"/"y))` ....(1)
when x = 0, y = 1
`c = 1(0 + e^o)`
c = 1
Put c = 1 in equation (1)
`1 = y(x/y + e^(x/y))`
APPEARS IN
संबंधित प्रश्न
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The number of arbitrary constants in the particular solution of a differential equation of third order is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.