हिंदी

Solve the Differential Equation: ( X + 1 ) D Y D X = 2 E − Y − 1 ; ( 0 ) = 0 . - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`

योग

उत्तर

`("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1`

⇒ `(d"y")/(2e^-"y" - 1) = (d"x")/("x" + 1)`

⇒  `(e^"y" d"y")/(2 -e^"y") = (d"x")/("x" + 1)`

Integrating both sides, we get:

`int_  (e^"y" d"y")/(2 -e^"y") = log |"x" + 1| + log "C"`  .....(1)

Let `2 -e^"y" = t.`

∴ `(d)/(d"y") (2 - e^"y") = (dt)/(d"y")`

⇒ `-e^"y" = (dt)/(d"y")`

⇒ `e^"y" dt  = -dt`

Substituting ths value in equation (1), we get:

`int_  (-dt)/(t) = log|"x" + 1| + log "C" `

⇒ `-log|"r"| = log| "C" ("x" + 1)`

⇒ `-log|2 - e^"y"| = log |"C"("x" + 1)|`

⇒ `(1)/(2 - e^"y") = "C" ("x" + 1)`

⇒ `2 - e^"y" = (1)/("C"("x" + 1)`     ....(2)

Now, at x = 0 and y = 0, equation (2) becomes:

⇒  `2 - 1 = (1)/("C")`

⇒ `"C" = 1`

Substituting C = 1 in equation (2), we get:

`2 -e^"y" = (1)/("x" + 1)`

⇒ `e^"y" = 2 -(1)/("x" + 1)`

⇒ `e^"y" = (2"x" + 2 - 1)/("x" + 1)`

⇒ `e^"y" = (2"x" + 1)/("x" +1)`

⇒ `"y" log|(2"x" + 1)/("x" + 1)|. ("x" ≠ - 1) `

This is the required particular solution of the given differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 65/1/3

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


\[\frac{dy}{dx} - y \tan x = e^x\]


(x2 + 1) dy + (2y − 1) dx = 0


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


The number of arbitrary constants in the general solution of a differential equation of order three is ______.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×