Advertisements
Advertisements
प्रश्न
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
उत्तर
`("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1`
⇒ `(d"y")/(2e^-"y" - 1) = (d"x")/("x" + 1)`
⇒ `(e^"y" d"y")/(2 -e^"y") = (d"x")/("x" + 1)`
Integrating both sides, we get:
`int_ (e^"y" d"y")/(2 -e^"y") = log |"x" + 1| + log "C"` .....(1)
Let `2 -e^"y" = t.`
∴ `(d)/(d"y") (2 - e^"y") = (dt)/(d"y")`
⇒ `-e^"y" = (dt)/(d"y")`
⇒ `e^"y" dt = -dt`
Substituting ths value in equation (1), we get:
`int_ (-dt)/(t) = log|"x" + 1| + log "C" `
⇒ `-log|"r"| = log| "C" ("x" + 1)`
⇒ `-log|2 - e^"y"| = log |"C"("x" + 1)|`
⇒ `(1)/(2 - e^"y") = "C" ("x" + 1)`
⇒ `2 - e^"y" = (1)/("C"("x" + 1)` ....(2)
Now, at x = 0 and y = 0, equation (2) becomes:
⇒ `2 - 1 = (1)/("C")`
⇒ `"C" = 1`
Substituting C = 1 in equation (2), we get:
`2 -e^"y" = (1)/("x" + 1)`
⇒ `e^"y" = 2 -(1)/("x" + 1)`
⇒ `e^"y" = (2"x" + 2 - 1)/("x" + 1)`
⇒ `e^"y" = (2"x" + 1)/("x" +1)`
⇒ `"y" log|(2"x" + 1)/("x" + 1)|. ("x" ≠ - 1) `
This is the required particular solution of the given differential equation.
APPEARS IN
संबंधित प्रश्न
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
\[\frac{dy}{dx} - y \tan x = e^x\]
(x2 + 1) dy + (2y − 1) dx = 0
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`