Advertisements
Advertisements
प्रश्न
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
उत्तर
The given differential equation is dy = cosx(2 – y cosecx) dx
⇒ `"dy"/"dx"` = cosx(2 – y cosec x)
⇒ `"dy"/"dx"` = 2cosx – ycosx . cosecx
⇒ `"dy"/"dx"` = 2cosx – ycotx
⇒ `"dy"/"dx" + y cot x` = 2cosx
Here, P = cotx and Q = 2cosx.
∴ Integrating factor I.F. = `"e"^(intPdx)`
= `"e"^(int cot xdx)`
= `"e"^(log sinx)`
= sin x
∴ Required solution is `y xx "I"."F" = int "Q" xx "I"."F". "d"x + "c"`
⇒ `y . sin x = int 2 cos x . sin x "d"x + "c"`
⇒ `y . sin x = int sin 2x "d"x + "c"`
⇒ `y . sin x = - 1/2 cos 2x + "c"`
Put x = `pi/2` and y = 2, we get
`2 sin pi/2 = - 1/2 cos pi + "c"`
⇒ 2(1) = `- 1/2 (-1) + "c"`
⇒ 2 = `1/2 + "c"`
⇒ c = `2 - 1/2 = 3/2`
∴ The equation is y sin x = `- 1/2 cos 2x + 3/2`.
APPEARS IN
संबंधित प्रश्न
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
The number of arbitrary constants in the general solution of differential equation of fourth order is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
x (e2y − 1) dy + (x2 − 1) ey dx = 0
\[\frac{dy}{dx} + 1 = e^{x + y}\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
\[\frac{dy}{dx} + 5y = \cos 4x\]
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.