हिंदी

Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = π2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`

योग

उत्तर

The given differential equation is dy = cosx(2 – y cosecx) dx

⇒ `"dy"/"dx"` = cosx(2 – y cosec x)

⇒ `"dy"/"dx"` = 2cosx – ycosx . cosecx

⇒ `"dy"/"dx"` = 2cosx – ycotx

⇒ `"dy"/"dx" + y cot x` = 2cosx 

Here, P = cotx and Q = 2cosx.

∴ Integrating factor I.F. = `"e"^(intPdx)`

= `"e"^(int cot xdx)`

= `"e"^(log sinx)`

= sin x

∴ Required solution is `y xx "I"."F" = int "Q" xx "I"."F".  "d"x + "c"`

⇒ `y . sin x = int 2 cos x . sin x "d"x + "c"`

⇒ `y . sin x = int sin 2x  "d"x + "c"`

⇒ `y . sin x = - 1/2 cos 2x + "c"`

Put x = `pi/2` and y = 2, we get

`2 sin  pi/2 = - 1/2 cos  pi + "c"`

⇒  2(1) = `- 1/2 (-1) + "c"`

⇒  2 = `1/2 + "c"`

⇒ c = `2 - 1/2 = 3/2`

∴ The equation is y sin x = `- 1/2 cos 2x + 3/2`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 21 | पृष्ठ १९४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`


Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The number of arbitrary constants in the general solution of differential equation of fourth order is


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[\frac{dy}{dx} + 1 = e^{x + y}\]


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×