Advertisements
Advertisements
प्रश्न
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
विकल्प
y = tan–1x
y – x = k(1 + xy)
x = tan–1y
tan(xy) = k
उत्तर
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is y – x = k(1 + xy).
Explanation:
The given differential equation is `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)`
⇒ `("d"y)/(1 + y^2) = ("d"x)/(1 + x^2)`
Integrating both sides, we get
`int ("d"y)/(1 + y^2) = int ("d"x)/(1 + x^2)`
⇒ tan–1y = tan–1x + c
⇒ tan–1y – tan–1x = c
⇒ `tan^-1((y - x)/(1 + xy))` = c
⇒ `(y - x)/(1 + xy)` = tan c
⇒ `((y - x)/(1 + xy))` = k ....[k = tan c]
⇒ y – x = k(1 + xy)
APPEARS IN
संबंधित प्रश्न
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
The number of arbitrary constants in the particular solution of a differential equation of third order is
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
x2 dy + (x2 − xy + y2) dx = 0
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Find the general solution of `"dy"/"dx" + "a"y` = emx
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.