Advertisements
Advertisements
प्रश्न
Find the general solution of `"dy"/"dx" + "a"y` = emx
उत्तर
Given equation is `"dy"/"dx" + "a"y` = emx
Here, P = a and Q = emx
∴ I.F. = `"e"^(int Pdx)`
= `"e"^(int a .dx)`
= eax.
Solution of equation is `y xx "I"."F" = int "Q" "I"."F" "d"x + "c"`
⇒ `y."e"^("a"x) = int "e"^"mx" . "e"^("a"x) "d"x + "c"`
⇒ `y . "e"^("a"x) = int "e"^(("m" + "a")x) "d"x + "c"`
⇒ `y . "e"^("a"x) = "e"^(("m" + "a")x)/(("m" + "a")) + "c"`
⇒ y = `"e"^(("m" + "a")x)/(("m" + "a")) . "e"^(-"a"x) + "c"."e"^(-"a"x)`
∴ y = `"e"^("m"x)/(("m" + "a")) + "c" . "e"^(-"a"x)`
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Find the differential equation representing the curve y = cx + c2.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`