हिंदी

D Y D X + Y X = Y 2 X 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]

योग

उत्तर

We have,

\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]

\[ \Rightarrow \frac{dy}{dx} = \left( \frac{y}{x} \right)^2 - \frac{y}{x}\]

Putting `y = vx,` we get

\[\frac{dy}{dx} = v + x\frac{dv}{dx}\]

\[ \therefore v + x\frac{dv}{dx} = v^2 - v\]

\[ \Rightarrow x\frac{dv}{dx} = v^2 - 2v\]

\[ \Rightarrow \frac{1}{v^2 - 2v} dv = \frac{1}{x}dx\]

Integrating both sides, we get

\[\int\frac{1}{v^2 - 2v} dv = \int\frac{1}{x}dx\]

\[ \Rightarrow \int\frac{1}{v^2 - 2v + 1 - 1} dv = \int\frac{1}{x}dx\]

\[ \Rightarrow \int\frac{1}{\left( v - 1 \right)^2 - \left( 1 \right)^2} dv = \int\frac{1}{x}dx\]

\[ \Rightarrow \frac{1}{2}\log \left| \frac{v - 1 - 1}{v - 1 + 1} \right| = \log x + \log C\]

\[ \Rightarrow \log \left| \left( \frac{v - 2}{v} \right)^\frac{1}{2} \right| = \log Cx\]

\[ \Rightarrow \log \left| \left( \frac{\frac{y}{x} - 2}{\frac{y}{x}} \right)^\frac{1}{2} \right| = \log Cx\]

\[ \Rightarrow \log \left| \left( \frac{y - 2x}{y} \right)^\frac{1}{2} \right| = \log Cx\]

\[ \Rightarrow \left( \frac{y - 2x}{y} \right)^\frac{1}{2} = Cx\]

\[ \Rightarrow \frac{y - 2x}{y} = C^2 x^2 \]

\[ \Rightarrow y - 2x = k x^2 y,\text{ where }k = C^2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 37 | पृष्ठ १४६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


If y = etan x+ (log x)tan x then find dy/dx


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


Which of the following differential equations has y = x as one of its particular solution?


Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .


The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is


\[\frac{dy}{dx} - y \tan x = e^x\]


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


(x3 − 2y3) dx + 3x2 y dy = 0


\[\frac{dy}{dx} + 5y = \cos 4x\]


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


Find the differential equation of all non-horizontal lines in a plane.


The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


Solution of differential equation xdy – ydx = 0 represents : ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


Which of the following differential equations has `y = x` as one of its particular solution?


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×