Advertisements
Advertisements
प्रश्न
cos (x + y) dy = dx
उत्तर
We have,
\[\cos \left( x + y \right)dy = dx\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{\cos\left( x + y \right)} . . . . . \left( 1 \right)\]
Let `x + y = v`
\[ \Rightarrow 1 + \frac{dy}{dx} = \frac{dv}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1\]
Therefore, (1) becomes
\[ \therefore \frac{dv}{dx} - 1 = \frac{1}{\cos v}\]
\[ \Rightarrow \frac{dv}{dx} = \frac{\cos v + 1}{\cos v}\]
\[ \Rightarrow \frac{\cos v}{\cos v + 1}dv = dx\]
Integrating both sides, we get
\[\int\frac{\cos v}{\cos v + 1}dv = \int dx\]
\[ \Rightarrow \int\frac{\cos v\left( 1 - \cos v \right)}{1 - \cos^2 v}dv = \int dx\]
\[ \Rightarrow \int\frac{\cos v\left( 1 - \cos v \right)}{\sin^2 v}dv = \int dx\]
\[ \Rightarrow \int\left( \cot v\ cosec\ v - co t^2 v \right)dv = \int dx\]
\[ \Rightarrow \int\left( \cot v\ cosec\ v - {cosec}^2 v + 1 \right)dv = \int dx\]
\[ \Rightarrow - cosec\ v + \cot v + v = x + C\]
\[ \Rightarrow - cosec \left( x + y \right) + \cot \left( x + y \right) + x + y = x + C\]
\[ \Rightarrow - cosec \left( x + y \right) + \cot \left( x + y \right) + y = C\]
\[ \Rightarrow cosec \left( x + y \right) - \cot \left( x + y \right) = y - C\]
\[ \Rightarrow \frac{1 - \cos \left( x + y \right)}{\sin \left( x + y \right)} = y - C\]
\[ \Rightarrow \frac{2 \sin^2 \left( \frac{x + y}{2} \right)}{2 \sin \left( \frac{x + y}{2} \right) \cos \left( \frac{x + y}{2} \right)} = y - C\]
\[ \Rightarrow \frac{\sin \left( \frac{x + y}{2} \right)}{\cos \left( x + y \right)} = y - C\]
\[ \Rightarrow \tan\left( \frac{x + y}{2} \right) = y - C\]
APPEARS IN
संबंधित प्रश्न
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
\[\frac{dy}{dx} = \left( x + y \right)^2\]
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
(x2 + 1) dy + (2y − 1) dx = 0
\[\frac{dy}{dx} + 2y = \sin 3x\]
\[\frac{dy}{dx} + y = 4x\]
\[\frac{dy}{dx} + 5y = \cos 4x\]
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
Find the differential equation of all non-horizontal lines in a plane.
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
Find the general solution of `"dy"/"dx" + "a"y` = emx
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`