Advertisements
Advertisements
प्रश्न
\[\frac{dy}{dx} + 2y = \sin 3x\]
उत्तर
We have,
\[\frac{dy}{dx} + 2y = \sin 3x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{where }P = 2\text{ and }Q = \sin 3x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int2 dx} \]
\[ = e^{2x} \]
\[\text{Multiplying both sides of (1) by }I.F. = e^{2x},\text{ we get}\]
\[ e^{2x} \left( \frac{dy}{dx} + 2y \right) = e^{2x} \sin 3x \]
\[ \Rightarrow e^{2x} \frac{dy}{dx} + 2 e^{2x} y = e^{2x} \sin 3x\]
Integrating both sides with respect to `x`, we get
\[y e^{2x} = \int e^{2x} \sin 3x dx + C\]
\[ \Rightarrow y e^{2x} = I + C . . . . . \left( 1 \right)\]
\[\text{Where, }I = \int e^{2x} \sin 3x dx . . . . . \left( 2 \right)\]
\[ \Rightarrow I = e^{2x} \int\sin 3x dx - \int\left[ \frac{d e^{2x}}{dx}\int\sin 3x dx \right]dx\]
\[ \Rightarrow I = - \frac{e^{2x} \cos 3x}{3} + \frac{2}{3}\int e^{2x} \cos 3x dx\]
\[ \Rightarrow I = - \frac{e^{2x} \cos 3x}{3} + \frac{2}{3}\left[ e^{2x} \int\cos 3x dx - \int\left( \frac{d e^{2x}}{dx}\int\cos 3x dx \right)dx \right]\]
\[ \Rightarrow I = - \frac{e^{2x} \cos 3x}{3} + \frac{2}{3}\left[ \frac{e^{2x} \sin 3x}{3} - \frac{2}{3}\int e^{2x} \sin 3x dx \right]\]
\[ \Rightarrow I = - \frac{e^{2x} \cos 3x}{3} + \frac{2 e^{2x} \sin 3x}{9} - \frac{4}{9}\int e^{2x} \sin 3x dx\]
\[ \Rightarrow I = - \frac{e^{2x} \cos 3x}{3} + \frac{2 e^{2x} \sin 3x}{9} - \frac{4}{9}I ............\left[\text{Using (2)} \right]\]
\[ \Rightarrow \frac{13I}{9} = - \frac{e^{2x} \cos 3x}{3} + \frac{2 e^{2x} \sin 3x}{9}\]
\[ \Rightarrow I = \frac{9}{13}\left( \frac{2 e^{2x} \sin 3x}{9} - \frac{e^{2x} \cos 3x}{3} \right)\]
\[ \Rightarrow I = \frac{e^{2x}}{13}\left( 2 \sin 3x - 3 \cos 3x \right) . . . . . \left( 3 \right)\]
From (1) and (3), we get
\[y e^{2x} = \frac{e^{2x}}{13}\left( 2 \sin 3x - 3 \cos 3x \right) + C\]
\[ \Rightarrow y = \frac{3}{13}\left( \frac{2}{3}\sin 3x - \cos 3x \right) + C e^{- 2x} \]
\[\text{Hence, }y = \frac{3}{13}\left( \frac{2}{3}\sin 3x - \cos 3x \right) + C e^{- 2x}\text{ is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
(1 + y + x2 y) dx + (x + x3) dy = 0
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
x2 dy + (x2 − xy + y2) dx = 0
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.