हिंदी

The general solution of the differential equation dydxdydx+ysecx = tan x is y(secx – tanx) = secx – tanx + x + k. - Mathematics

Advertisements
Advertisements

प्रश्न

The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is False.

Explanation:

Since I.F. = `"e"^(int sec x"d"x)`

= `"e"^(log(secx + tanx)`

= secx + tanx

The solution is, y(secx + tanx) = `int (secx + tanx)tan x"d"x`

= `int(secx tanx + sec^2x - 1)"d"x`

= secx + tanx – x + k

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Solved Examples [पृष्ठ १९१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Solved Examples | Q 23. (viii) | पृष्ठ १९१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


The differential equation of the family of curves y=c1ex+c2e-x is......

(a)`(d^2y)/dx^2+y=0`

(b)`(d^2y)/dx^2-y=0`

(c)`(d^2y)/dx^2+1=0`

(d)`(d^2y)/dx^2-1=0`


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Solve the differential equation `cos^2 x dy/dx` + y = tan x


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×