Advertisements
Advertisements
प्रश्न
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
विकल्प
\[\sin\frac{x}{y} = x + C\]
\[\sin\frac{y}{x} = Cx\]
\[\sin\frac{x}{y} = Cy\]
\[\sin\frac{y}{x} = Cy\]
उत्तर
\[\sin\frac{y}{x} = Cx\]
We have,
\[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x} + \tan\frac{y}{x} . . . . . \left( 1 \right)\]
\[\text{ Let }y = vx\]
\[ \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[\text{ Putting the above value in }\left( 1 \right),\text{ we get}\]
\[v + x\frac{dv}{dx} = v + \tan v\]
\[ \Rightarrow x\frac{dv}{dx} = \tan v\]
\[ \Rightarrow \frac{dv}{\tan v} = \frac{dx}{x}\]
Integrating both sides, we get
\[\log \sin v = \log x + \log C\]
\[ \Rightarrow \log \sin v - \log x = \log C\]
\[ \Rightarrow \log\frac{\sin v}{x} = \log C\]
\[ \Rightarrow \frac{\sin v}{x} = C\]
\[ \Rightarrow \sin v = Cx\]
\[ \Rightarrow \sin\left( \frac{y}{x} \right) = Cx .........\left[\because y = vx \right]\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
cos (x + y) dy = dx
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
(1 + y + x2 y) dx + (x + x3) dy = 0
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
\[\frac{dy}{dx} + y = 4x\]
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
Solution of differential equation xdy – ydx = 0 represents : ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.