Advertisements
Advertisements
प्रश्न
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
विकल्प
`("d"^2y)/("d"x^2) - alpha^2y` = 0
`("d"^2y)/("d"x^2) + alpha^2y` = 0
`("d"^2y)/("d"x^2) + alphay` = 0
`("d"^2y)/("d"x^2) - alphay` = 0
उत्तर
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is `("d"^2y)/("d"x^2) + alpha^2y` = 0.
Explanation:
Given equation is : y = A cos a x + B sin a x
Differentiating both sides w.r.t. x, we have
`("d"y)/("d"x) = -"A" sin alpha x * alpha + "B" cos alpha x * alpha`
= `- "A" alpha sin alphax + "B" alpha cos alpha x`
Again differentiating w.r.t. x, we get
`("d"^2y)/("d"x^2) = -"A"alpha^2 cos alpha x - "B" alpha^2 sin alpha x`
⇒ `("d"^2y)/("d"x^2) = -alpha^2 ("A" cos alphax + "B" sin alpha x)`
⇒ `("d"^2y)/("d"x^2) = - alpha^2y`
⇒ `("d"^2y)/("d"x^2) + alpha^2y` = 0
APPEARS IN
संबंधित प्रश्न
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
The number of arbitrary constants in the particular solution of a differential equation of third order is
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
(x + y − 1) dy = (x + y) dx
(x2 + 1) dy + (2y − 1) dx = 0
x2 dy + (x2 − xy + y2) dx = 0
\[\frac{dy}{dx} + 5y = \cos 4x\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Solution of differential equation xdy – ydx = 0 represents : ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`