हिंदी

If y(t) is a solution of tdydtt(1+t)dydt-ty = 1 and y(0) = – 1, then show that y(1) = -12. - Mathematics

Advertisements
Advertisements

प्रश्न

If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.

योग

उत्तर

Given equation is `(1 + "t")"dy"/"dt" - "t"y` = 1

⇒ `"dy"/"dt" - ("t"/(1 + "t")) y = 1/(1 + "t")`

Here, P = `(-"t")/(1 + "t")` and Q = `1/(1 + "t")`

∴ Integrating factor I.F. = `"e"^(intpdt)`

= `"e"^(int (-1)/(1 + "t") "dt")`

= `"e"^(-int (1 + "t" - 1)/(1 + "t") "dt")`

= `"e"^(-int(1 - 1/(1 + "t"))"dt")`

= `"e"^(-["t" - log(1 + "t")])`

= `"e"^(-"t" + log(1 + "t"))`

= `"e"^(-"t") * "e"^(log(1 + "t"))`

∴ I.F. = `"e"^(-"t") * (1 + "t")`

Required solution of the given differential equation is

y . I. F. = `int "Q" . "I"."F". "dt" + "c"`

⇒ `y * "e"^-"t" (1 + "t") = int 1/((1 + "t")) * "e"^-"t" * (1 + "t")  "dt" + "c"`

⇒ `y * "e"^-"t" (1 + "t") = int "e"^-"t"  "dt" + "c"`

⇒ `y * "e"^-"t" (1 + "t") = - "e"^-"t" + "c"`

Put t = 0 and y = –1  ....[∵ y(0) = –1]

⇒ `-1 * "e"^0 * 1 = -"e"^0 + "c"`

⇒ –1 = –1 + c

⇒ c = 0

So the equation becomes

`y"e"^-"t" (1 + "t") = -"e"^-"t"`

Now put t = 1

∴ `y * "e"^-1 (1 + 1) = -"e"^-1`

⇒ 2y = –1

⇒ y = `- 1/2`

Hence y(1) = `-1/2` is verified.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ १९३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 12 | पृष्ठ १९३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.


The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .


Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


\[\frac{dy}{dx} + 1 = e^{x + y}\]


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


Which of the following differential equations has `y = x` as one of its particular solution?


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×