हिंदी

Solve the Differential Equation (X2 − Yx2) Dy + (Y2 + X2y2) Dx = 0, Given that Y = 1, When X = 1. - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.

उत्तर

Given: ​(x2 − yx2dy + (y2 + x2y2dx = 0
Dividing both the sides by 

\[dx\],  we get:

\[\left( x^2 - y x^2 \right)\frac{dy}{dx} + \left( y^2 + x^2 y^2 \right) = 0\]

\[\Rightarrow x^2 \left( 1 - y \right)\frac{dy}{dx} + y^2 \left( 1 + x^2 \right) = 0\]

\[ \Rightarrow - x^2 \left( 1 - y \right)\frac{dy}{dx} = y^2 \left( 1 + x^2 \right)\]

\[ \Rightarrow x^2 \left( y - 1 \right)\frac{dy}{dx} = y^2 \left( 1 + x^2 \right)\]

\[ \Rightarrow \frac{\left( y - 1 \right)}{y^2}dy = \frac{1 + x^2}{x^2}dx\]

Integration both the sides:

\[\int\frac{\left( y - 1 \right)}{y^2}dy = \int\frac{1 + x^2}{x^2}dx\]

\[\frac{1}{2}\int\frac{2y}{y^2}dy - \int\frac{1}{y^2}dy = \int\frac{1}{x^2}dx + \int1 . dx\]

\[\text { Put } y^2 = t\]

\[\text { Differentiating w . r . t  }t , 2ydy = dt\]

\[ \Rightarrow \frac{1}{2}\int\frac{dt}{t} + \frac{1}{y} = - \frac{1}{x} + x\]

\[ \Rightarrow \frac{1}{2}\log\left| y^2 \right| + \frac{1}{y} = - \frac{1}{x} + x + C\]

Given: y=1, x=1

\[ \Rightarrow \frac{1}{2}\log\left| 1 \right| + 1 = - 1 + 1 + C\]

\[ \Rightarrow C = 1\]

\[\Rightarrow \frac{1}{2}\log\left| y^2 \right| + \frac{1}{y} = - \frac{1}{x} + x + 1\] is the required solution.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) Foreign Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


(x3 − 2y3) dx + 3x2 y dy = 0


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


General solution of `("d"y)/("d"x) + y` = sinx is ______.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×