Advertisements
Advertisements
प्रश्न
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
विकल्प
True
False
उत्तर
This statement is True.
Explanation:
The given differential equation is `("d"y)/("d"x) = (x + 2y)/x`
⇒ `("d"y)/("d"x) = 1 + 2 y/x`
⇒ `("d"y)/("d"x) = (2y)/x` = 1
Here, P = `(-2)/x` and Q = 1
Integrating factor I.F. = `"e"^(int(-2)/x "d"x)`
= `"e"^(-2 log x)`
= `"e"^(log x^-2)`
= `1/x^2`
∴ Solution is `y xx "I"."F". = int "Q" xx "I"."F". "d"x + "c"`
⇒ `y xx 1/x^2 = int 1 xx 1/x^2 "d"x + "c"`
⇒ `y/x^2 = int 1/x^2 "d"x + "c"`
⇒ `y/x^2 = - 1/x + "c"`
⇒ y = `-x + "c"x^2`
⇒ y + x = cx2
APPEARS IN
संबंधित प्रश्न
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Solve the differential equation `cos^2 x dy/dx` + y = tan x
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
\[\frac{dy}{dx} - y \tan x = e^x\]
(x2 + 1) dy + (2y − 1) dx = 0
(x3 − 2y3) dx + 3x2 y dy = 0
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Which of the following differential equations has `y = x` as one of its particular solution?
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.