हिंदी

The Solution of the Differential Equation ( 1 + X 2 ) D Y D X + 1 + Y 2 = 0 , is - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is

विकल्प

  • tan1 x − tan−1 y = tan−1 C

  • tan−1 y − tan−1 x = tan−1 C

  • tan−1 y ± tan−1 x = tan C

  • tan−1 y + tan−1 x = tan−1 C

MCQ

उत्तर

tan−1y + tan−1x = tan−1C

 

We have,

\[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\]

\[ \Rightarrow \left( 1 + x^2 \right)\frac{dy}{dx} = - \left( 1 + y^2 \right)\]

\[ \Rightarrow \frac{1}{\left( 1 + y^2 \right)}dy = - \frac{1}{\left( 1 + x^2 \right)}dx\]

Integrating both sides we get,

\[\int\frac{1}{\left( 1 + y^2 \right)}dy = - \int\frac{1}{\left( 1 + x^2 \right)}dx\]

\[ \Rightarrow \tan^{- 1} y = - \tan^{- 1} x + \tan^{- 1} C\]

\[ \Rightarrow \tan^{- 1} y + \tan^{- 1} x = \tan^{- 1} C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - MCQ [पृष्ठ १४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
MCQ | Q 34 | पृष्ठ १४२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Find the particular solution of the differential equation  `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


Solve the differential equation `cos^2 x dy/dx` + y = tan x


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The number of arbitrary constants in the general solution of differential equation of fourth order is


Which of the following differential equations has y = x as one of its particular solution?


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]


(1 + y + x2 y) dx + (x + x3) dy = 0


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


The differential equation for which y = acosx + bsinx is a solution, is ______.


Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×