Advertisements
Advertisements
Question
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
Options
tan−1 x − tan−1 y = tan−1 C
tan−1 y − tan−1 x = tan−1 C
tan−1 y ± tan−1 x = tan C
tan−1 y + tan−1 x = tan−1 C
Solution
tan−1y + tan−1x = tan−1C
We have,
\[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\]
\[ \Rightarrow \left( 1 + x^2 \right)\frac{dy}{dx} = - \left( 1 + y^2 \right)\]
\[ \Rightarrow \frac{1}{\left( 1 + y^2 \right)}dy = - \frac{1}{\left( 1 + x^2 \right)}dx\]
Integrating both sides we get,
\[\int\frac{1}{\left( 1 + y^2 \right)}dy = - \int\frac{1}{\left( 1 + x^2 \right)}dx\]
\[ \Rightarrow \tan^{- 1} y = - \tan^{- 1} x + \tan^{- 1} C\]
\[ \Rightarrow \tan^{- 1} y + \tan^{- 1} x = \tan^{- 1} C\]
APPEARS IN
RELATED QUESTIONS
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
Solve the differential equation `cos^2 x dy/dx` + y = tan x
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The number of arbitrary constants in the particular solution of a differential equation of third order is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
x (e2y − 1) dy + (x2 − 1) ey dx = 0
\[\frac{dy}{dx} = \left( x + y \right)^2\]
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\frac{dy}{dx} + 5y = \cos 4x\]
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
Solution of differential equation xdy – ydx = 0 represents : ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.