English

Y − X D Y D X = B ( 1 + X 2 D Y D X ) - Mathematics

Advertisements
Advertisements

Question

\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]

Sum

Solution

We have,

\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]

\[ \Rightarrow y - b = \left( b x^2 + x \right)\frac{dy}{dx}\]

\[ \Rightarrow \left( \frac{1}{y - b} \right)dy = \left( \frac{1}{b x^2 + x} \right)dx\]

Integrating both sides, we get

\[\int\left( \frac{1}{y - b} \right)dy = \int\left( \frac{1}{b x^2 + x} \right)dx\]

\[ \Rightarrow \int\left( \frac{1}{y - b} \right)dy = \frac{1}{b}\int\left( \frac{1}{x^2 + \frac{1}{b}x} \right)dx\]

\[ \Rightarrow \int\left( \frac{1}{y - b} \right)dy = \frac{1}{b}\int\left( \frac{1}{x^2 + \frac{1}{b}x + \frac{1}{4 b^2} - \frac{1}{4 b^2}} \right)dx\]

\[ \Rightarrow \int\left( \frac{1}{y - b} \right)dy = \frac{1}{b}\int\frac{1}{\left( x + \frac{1}{2b} \right)^2 - \left( \frac{1}{2b} \right)^2}dx\]

\[ \Rightarrow \log \left| y - b \right| = \frac{1}{2 \times \frac{1}{2b}b}\log \left| \frac{x + \frac{1}{2b} - \frac{1}{2b}}{x + \frac{1}{2b} + \frac{1}{2b}} \right| + \log C\]

\[ \Rightarrow \log \left| y - b \right| = \log \left| \frac{bx}{bx + 1} \right| + \log C\]

\[ \Rightarrow y - b = \frac{Cbx}{bx + 1}\]

\[ \Rightarrow Cbx = \left( y - b \right)\left( bx + 1 \right)\]

\[ \Rightarrow x = k\left( y - b \right)\left( bx + 1 \right),\text{ where }k = \frac{1}{bC}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 146]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 50 | Page 146

RELATED QUESTIONS

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Find the differential equation representing the curve y = cx + c2.


Solve the differential equation `dy/dx -y =e^x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


y = aemx+ be–mx satisfies which of the following differential equation?


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


General solution of `("d"y)/("d"x) + y` = sinx is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Find the general solution of the differential equation:

`log((dy)/(dx)) = ax + by`.


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×