Advertisements
Advertisements
Question
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
Solution
We have,
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[ \Rightarrow y - b = \left( b x^2 + x \right)\frac{dy}{dx}\]
\[ \Rightarrow \left( \frac{1}{y - b} \right)dy = \left( \frac{1}{b x^2 + x} \right)dx\]
Integrating both sides, we get
\[\int\left( \frac{1}{y - b} \right)dy = \int\left( \frac{1}{b x^2 + x} \right)dx\]
\[ \Rightarrow \int\left( \frac{1}{y - b} \right)dy = \frac{1}{b}\int\left( \frac{1}{x^2 + \frac{1}{b}x} \right)dx\]
\[ \Rightarrow \int\left( \frac{1}{y - b} \right)dy = \frac{1}{b}\int\left( \frac{1}{x^2 + \frac{1}{b}x + \frac{1}{4 b^2} - \frac{1}{4 b^2}} \right)dx\]
\[ \Rightarrow \int\left( \frac{1}{y - b} \right)dy = \frac{1}{b}\int\frac{1}{\left( x + \frac{1}{2b} \right)^2 - \left( \frac{1}{2b} \right)^2}dx\]
\[ \Rightarrow \log \left| y - b \right| = \frac{1}{2 \times \frac{1}{2b}b}\log \left| \frac{x + \frac{1}{2b} - \frac{1}{2b}}{x + \frac{1}{2b} + \frac{1}{2b}} \right| + \log C\]
\[ \Rightarrow \log \left| y - b \right| = \log \left| \frac{bx}{bx + 1} \right| + \log C\]
\[ \Rightarrow y - b = \frac{Cbx}{bx + 1}\]
\[ \Rightarrow Cbx = \left( y - b \right)\left( bx + 1 \right)\]
\[ \Rightarrow x = k\left( y - b \right)\left( bx + 1 \right),\text{ where }k = \frac{1}{bC}\]
APPEARS IN
RELATED QUESTIONS
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
Find the differential equation representing the curve y = cx + c2.
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.