English

For the Following Differential Equation, Find a Particular Solution Satisfying the Given Condition:- D Y D X = Y Tan X , Y = 1 When X = 0 - Mathematics

Advertisements
Advertisements

Question

For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]

Sum

Solution

We have,

\[\frac{dy}{dx} = y \tan x\]

\[ \Rightarrow \frac{1}{y}dy = \tan x dx\]

Integrating both sides, we get

\[\int\frac{1}{y}dy = \int\tan x dx\]

\[ \Rightarrow \log y = \log \left| \sec x \right| + C . . . . . . . \left( 1 \right)\]

Now,

When `x = 0, y = 1`

\[ \therefore \log 1 = \log 1 + C\]

\[ \Rightarrow C = 0\]

Putting the value of `C` in (1), we get

\[\log y = \log \left| \sec x \right|\]

\[ \Rightarrow y = \sec x\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 146]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 65.3 | Page 146

RELATED QUESTIONS

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the differential equation representing the curve y = cx + c2.


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Solve the differential equation `dy/dx -y =e^x`


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is


The number of arbitrary constants in the particular solution of a differential equation of third order is


Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

cos (x + y) dy = dx


\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]


\[\frac{dy}{dx} - y \tan x = e^x\]


(1 + y + x2 y) dx + (x + x3) dy = 0


x2 dy + (x2 − xy + y2) dx = 0


\[\frac{dy}{dx} + 2y = \sin 3x\]


\[\frac{dy}{dx} + y = 4x\]


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×