Advertisements
Advertisements
Question
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
Solution
The differential equation is a linear differential equation
IF = `e^(int cotxdx) = e^(logsinx) = sinx`
The general solution is given by
`ysinx = int 2 sinx/(1 + sinx) dx`
⇒ `ysinx = 2 int (sinx + 1 - 1)/(1 + sinx) dx = 2 int [1 - 1/(1 + sinx)] dx`
⇒ `ysinx = 2 int [1 - 1/(1 + cos(pi/2 - x))] dx`
⇒ `ysinx = 2 int [1 - 1/(2cos^2 (pi/4 - x/2))] dx`
⇒ `ysinx = 2 int [1 - 1/2 sec^2 (pi/4 - x/2)] dx`
⇒ `ysinx = 2[x + tan(pi/4 - x/2)] + c`
Given that y = 0, when x = `pi/4`,
Hence, 0 = `2[pi/4 + tan pi/8] + c`
⇒ `c = - pi/2 - 2 tan pi/8`
Hence, the particular solution is `y = "cosec"x [2{x + tan (pi/4 - x/2)} - (pi/2 + 2tan pi/8)]`
APPEARS IN
RELATED QUESTIONS
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\frac{dy}{dx} + y = 4x\]
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} + \frac{y}{x} = x^2\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.