English

Find the particular solution of the following differential equation, given that y = 0 when x = π4. dydx+ycotx=21+sinx - Mathematics

Advertisements
Advertisements

Question

Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`

Sum

Solution

The differential equation is a linear differential equation

IF = `e^(int cotxdx) = e^(logsinx) = sinx`

The general solution is given by

`ysinx = int 2 sinx/(1 + sinx) dx`

⇒ `ysinx = 2 int (sinx + 1 - 1)/(1 + sinx) dx = 2 int [1 - 1/(1 + sinx)] dx`

⇒ `ysinx = 2 int [1 - 1/(1 + cos(pi/2 - x))] dx`

⇒ `ysinx = 2 int [1 - 1/(2cos^2 (pi/4 - x/2))] dx`

⇒ `ysinx = 2 int [1 - 1/2 sec^2 (pi/4 - x/2)] dx`

⇒ `ysinx = 2[x + tan(pi/4 - x/2)] + c`

Given that y = 0, when x = `pi/4`,

Hence, 0 = `2[pi/4 + tan  pi/8] + c`

⇒ `c = - pi/2 - 2 tan  pi/8`

Hence, the particular solution is `y = "cosec"x [2{x + tan  (pi/4 - x/2)} - (pi/2 + 2tan  pi/8)]`

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (April) Term 2 Sample

RELATED QUESTIONS

Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Solve the differential equation `dy/dx -y =e^x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[\frac{dy}{dx} + y = 4x\]


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


y = aemx+ be–mx satisfies which of the following differential equation?


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×