Advertisements
Advertisements
Question
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
Solution
We have,
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
\[ \Rightarrow y \left( 2 \log y + 1 \right)dy = \left( \sin x + x \cos x \right)dx\]
Integrating both sides, we get
\[ \Rightarrow 2\log y\int y\ dy - 2\int\left( \frac{d}{dy}\left( \log y \right) \times \int y\ dy \right)dy + \int y\ dy = - \cos x + x\int \cos x\ dx - \int \left[ \frac{dx}{dx} \times \int\cos x \right] dx\]
\[ \Rightarrow y^2 \log y - \int y\ dy + \int y\ dy = - \cos x + x \sin x\ dx + \cos x + C\]
\[ \Rightarrow y^2 \log y = x \sin x + C\]
APPEARS IN
RELATED QUESTIONS
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
\[\frac{dy}{dx} - y \tan x = e^x\]
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \frac{y}{x} = x^2\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Find the general solution of `"dy"/"dx" + "a"y` = emx
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
The solution of differential equation coty dx = xdy is ______.
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.