Advertisements
Advertisements
Question
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
Options
`(2x - 1)/(2y + 3)` = k
`(y + 1)/(2x - 3)` = k
`(2x + 3)/(2y - 1)` = k
`(2x - 1)/(2y - 1)` = k
Solution
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is `(2x + 3)/(2y - 1)` = k.
Explanation:
The given differential equation is (2y – 1)dx – (2x + 3)dy = 0
⇒ (2x + 3)dy = (2y – 1)dx
⇒ `("d"y)/(2y - 1) = ("d"x)/(2x + 3)`
Integrating both sides, we get
`int ("d"y)/(2y - 1) = int ("d"x)/(2x + 3)`
⇒ `1/2 log|2y - 1| = 1/2 log |2x + 3| + log"c"`
⇒ `log|2y - 1| = log|2x + 3| + 2 log "c"`
⇒ `log|2y - 1| - log|2x + 3| = log "c"^2`
⇒ `log|(2y - 1)/(2x + 3)| = log "c"^2`
⇒ `(2y - 1)/(2x + 3) = "c"^2`
⇒ `(2x + 3)/(2y - 1) = 1/"c"^2`
⇒ `(2x + 3)/(2y - 1)` = k
Where k = `1/"c"^2`.
APPEARS IN
RELATED QUESTIONS
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
If y = etan x+ (log x)tan x then find dy/dx
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The number of arbitrary constants in the general solution of differential equation of fourth order is
The number of arbitrary constants in the particular solution of a differential equation of third order is
Which of the following differential equations has y = x as one of its particular solution?
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
(1 + y + x2 y) dx + (x + x3) dy = 0
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
Find the general solution of `"dy"/"dx" + "a"y` = emx
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
Solution of differential equation xdy – ydx = 0 represents : ______.
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.