Advertisements
Advertisements
Question
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
Options
ex + e−y = C
ex + ey = C
e−x + ey = C
e−x + e−y = C
Solution
ex + e−y = C
We have,
\[\frac{dy}{dx} = e^{x + y} \]
\[ \Rightarrow \frac{dy}{dx} = e^x \times e^y \]
\[ \Rightarrow e^{- y} dy = e^x dx\]
Integrating both sides, we get
\[\int e^{- y} dy = \int e^x dx\]
\[ \Rightarrow - e^{- y} = e^x + D\]
\[ \Rightarrow e^x + e^{- y} = - D\]
\[ \Rightarrow e^x + e^{- y} = C ..........\left[\text{ Where, }C = - D \right]\]
APPEARS IN
RELATED QUESTIONS
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Solve the differential equation `cos^2 x dy/dx` + y = tan x
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The number of arbitrary constants in the general solution of differential equation of fourth order is
The number of arbitrary constants in the particular solution of a differential equation of third order is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
(x2 + 1) dy + (2y − 1) dx = 0
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\frac{dy}{dx} + 5y = \cos 4x\]
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.