English

If y = e–x (Acosx + Bsinx), then y is a solution of ______. - Mathematics

Advertisements
Advertisements

Question

If y = e–x (Acosx + Bsinx), then y is a solution of ______.

Options

  • `("d"^2y)/("d"x^2) + 2("d"y)/("d"x)` = 0

  • `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y ` = 0

  • `("d"^2y)/("d"x^2) + 2 ("d"y)/("d"x) + 2y` = 0

  • `("d"^2y)/("d"x^2) + 2y` = 0

MCQ
Fill in the Blanks

Solution

If y = e–x (Acosx + Bsinx), then y is a solution of `("d"^2y)/("d"x^2) + 2 ("d"y)/("d"x) + 2y` = 0.

Explanation:

Given equation is y = e–x (Acosx + Bsinx)

Differentiating both sides, w.r.t. x, we get

 `("d"y)/("d"x)` = e–x (–A sin x + B cos x) – e–x (A cos x + B sin x)

`("d"y)/("d"x)` = e–x (–A sin x + B cos x) – y

Again differentiating w.r.t. x, we get

`("d"^2y)/("d"x^2) = "e"^-x (-"A" cos x - "B" sin x) - "e"^-x (-"A" sinx + "B"cosx) - ("d"y)/("d"x)`  

⇒ `("d"^2y)/("d"x^2) = -"e"^-x ("A" cosx + "B" sinx) - [("d"y)/("d"x) + y] - ("d"y)/("d"x)`

⇒ `("d"^2y)/("d"x^2) = - y - ("d"y)/("d"x) - y - ("d"y)/("d"x)`

⇒ `("d"^2y)/("d"x^2) = - 2 ("d"y)/("d"x) - 2y`

⇒ `("d"^2y)/("d"x^2) + 2("d"y)/("d"x) + 2y` = 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise [Page 195]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise | Q 37 | Page 195

RELATED QUESTIONS

Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .


\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


Find the differential equation of all non-horizontal lines in a plane.


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


General solution of `("d"y)/("d"x) + y` = sinx is ______.


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×