Advertisements
Advertisements
Question
The order and degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^(1/4) + x^(1/5)` = 0, respectively, are ______.
Options
2 and not defined
2 and 2
2 and 3
3 and 3
Solution
The order and degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^(1/4) + x^(1/5)` = 0, respectively, are 2 and not defined.
Explanation:
Given differential equation is
`("d"^2y)/("d"x^2) + (("d"y)/("d"x))^(1/4) + x^(1/5)` = 0
⇒ `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^(1/4) = - x^(1/5)`
Since the degree of `("d"y)/("d"x)` is in fraction.
So, the degree of the differential equation is not defined as the order is 2.
APPEARS IN
RELATED QUESTIONS
Determine the order and degree (if defined) of the differential equation:
y′ + y = ex
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
xy = a ex + b e-x + x2 : `x (d^2y)/(dx^2) + 2 dy/dx - xy + x^2 - 2 = 0`
Write the order of the differential equation of the family of circles touching X-axis at the origin.
Determine the order and degree (if defined) of the following differential equation:-
(y"')2 + (y")3 + (y')4 + y5 = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = x2 + 2x + C y' − 2x − 2 = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = x sin x `xy'=y+xsqrt(x^2-y^2)`
Find the order and the degree of the differential equation `x^2 (d^2y)/(dx^2) = { 1 + (dy/dx)^2}^4`
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + "x"("dy"/"dx")` + y = 2 sin x
Determine the order and degree of the following differential equation:
(y''')2 + 3y'' + 3xy' + 5y = 0
Choose the correct option from the given alternatives:
The order and degree of the differential equation `sqrt(1 + ("dy"/"dx")^2) = (("d"^2"y")/"dx"^2)^(3/2)` are respectively.
Determine the order and degree of the following differential equations.
`(y''')^2 + 2(y'')^2 + 6y' + 7y = 0`
Determine the order and degree of the following differential equations.
`sqrt(1+1/(dy/dx)^2) = (dy/dx)^(3/2)`
Determine the order and degree of the following differential equations.
`((d^3y)/dx^3)^(1/6) = 9`
Find the order and degree of the following differential equation:
`x+ dy/dx = 1 + (dy/dx)^2`
The order and degree of the differential equation `[1 + ["dy"/"dx"]^3]^(7/3) = 7 (("d"^2"y")/"dx"^2)` are respectively.
If m and n are the order and degree of the differential equation `((d^3y)/(dx^3))^6+5((d^3y)/(dx^3))^4/((d^4y)/(dx^4))+(d^4y)/(dx^4)=x^3-1,` then ______.
The degree of the differential equation `("d"^2"y")/("dx"^2) + 3("dy"/"dx")^2 = "x"^2 (("d"^2"y")/("dx"^2))^2` is:
The degree of differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin((dy)/(dx)) + 1` = 0 is:
The degree of the differential equation `((d^2y)/dx^2)^2 + (dy/dx)^3` = ax is 3.
The sum of the order and the degree of the differential equation `d/dx[(dy/dx)^3]` is ______.
The order and the degree of the differential equation `(1 + 3 dy/dx)^2 = 4 (d^3y)/(dx^3)` respectively are ______.
Find the order and degree of the differential equation `(d^2y)/(dx^2) = root(3)(1 - (dy/dx)^4`
Assertion: Degree of the differential equation: `a(dy/dx)^2 + bdx/dy = c`, is 3
Reason: If each term involving derivatives of a differential equation is a polynomial (or can be expressed as polynomial) then highest exponent of the highest order derivative is called the degree of the differential equation.
Which of the following is correct?