English

D 2 Y D X 2 + 5 X ( D Y D X ) − 6 Y = Log X - Mathematics

Advertisements
Advertisements

Question

\[\frac{d^2 y}{d x^2} + 5x\left( \frac{dy}{dx} \right) - 6y = \log x\]
One Line Answer
Sum

Solution

\[\frac{d^2 y}{d x^2} + 5x\left( \frac{dy}{dx} \right) - 6y = \log x\]
In this differential equation, the order of the highest order derivative is 2 and its power is 1. So, the order of the differential equation is 2 and its degree is 1.
It is a linear differential equation.
shaalaa.com

Notes

The answer given in the book has some error. The solution here is created according to the question given in the book.

  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.01 [Page 5]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.01 | Q 23 | Page 5

RELATED QUESTIONS

Determine the order and degree (if defined) of the differential equation:

y' + 5y = 0


Determine the order and degree (if defined) of the differential equation:

`(d^2y)/(dx^2)^2 + cos(dy/dx) = 0`


For the differential equation given below, indicate its order and degree (if defined).

`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`


For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.

`x^2 = 2y^2 log y : (x^2  + y^2) dy/dx - xy = 0`


\[s^2 \frac{d^2 t}{d s^2} + st\frac{dt}{ds} = s\]

\[\sqrt{1 - y^2} dx + \sqrt{1 - x^2} dx = 0\]

\[y = x\frac{dy}{dx} + a\sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

\[\frac{d^2 y}{d x^2} + 3 \left( \frac{dy}{dx} \right)^2 = x^2 \log\left( \frac{d^2 y}{d x^2} \right)\]

\[\left( \frac{dy}{dx} \right)^3 - 4 \left( \frac{dy}{dx} \right)^2 + 7y = \sin x\]

Define degree of a differential equation.


Write the order and degree of the differential equation
\[y = x\frac{dy}{dx} + a\sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]


Write the order of the differential equation of the family of circles touching X-axis at the origin.


Write the order of the differential equation of all non-horizontal lines in a plane.


Write the order of the differential equation whose solution is y = a cos x + b sin x + c e−x.


Write the degree of the differential equation \[\left( 1 + \frac{dy}{dx} \right)^3 = \left( \frac{d^2 y}{d x^2} \right)^2\]


Write the degree of the differential equation \[\frac{d^2 y}{d x^2} + 3 \left( \frac{dy}{dx} \right)^2 = x^2 \log\left( \frac{d^2 y}{d x^2} \right)\]


Find the sum of the order and degree of the differential equation
\[y = x \left( \frac{dy}{dx} \right)^3 + \frac{d^2 y}{d x^2}\]


Write the order and the degree of the following differential equation: `"x"^3 ((d^2"y")/(d"x"^2))^2 + "x" ((d"y")/(d"x"))^4 = 0`


Determine the order and degree of the following differential equation:

`(("d"^3"y")/"dx"^3)^(1/2) - ("dy"/"dx")^(1/3) = 20`


Determine the order and degree of the following differential equation:

`"x" + ("d"^2"y")/"dx"^2 = sqrt(1 + (("d"^2"y")/"dx"^2)^2)`


Determine the order and degree of the following differential equation:

`("d"^4"y")/"dx"^4 + sin ("dy"/"dx") = 0`


Determine the order and degree of the following differential equations.

`(d^2x)/(dt^2)+((dx)/(dt))^2 + 8=0`


Determine the order and degree of the following differential equations.

`((d^2y)/(dx^2))^2 + ((dy)/(dx))^2 =a^x `


Determine the order and degree of the following differential equations.

`((d^3y)/dx^3)^(1/6) = 9`


State the degree of differential equation `"e"^((dy)/(dx)) + (dy)/(dx)` = x


Degree of the given differential equation

`(("d"^3"y")/"dx"^2)^2 = (1 + "dy"/"dx")^(1/3)` is


The degree of the differential equation `1/2 ("d"^3"y")/"dx"^3 = {1 + (("d"^2"y")/"dx"^2)}^(5/3)` is ______.


The order and degree of `(("n + 1")/"n")("d"^4"y")/"dx"^4 = ["n" + (("d"^2"y")/"dx"^2)^4]^(3//5)` are respectively.


The order of the differential equation of all circles of radius r, having centre on X-axis and passing through the origin is ______.


The degree of the differential equation `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` is ______.


The order and degree of the differential equation `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` respectively, are ______.


The order and degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^(1/4) + x^(1/5)` = 0, respectively, are ______.


The degree of the differential equation `("d"^2"y")/("dx"^2) + 3("dy"/"dx")^2 = "x"^2 (("d"^2"y")/("dx"^2))^2` is:


The degree of differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin((dy)/(dx)) + 1` = 0 is:


The degree of the differential equation `dy/dx - x = (y - x dy/dx)^-4` is ______.


The sum of the order and the degree of the differential equation `d/dx[(dy/dx)^3]` is ______.


Find the order and degree of the differential equation `(d^2y)/(dx^2) = root(3)(1 - (dy/dx)^4`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×