English

Determine the order and degree (if defined) of the differential equation: y' + 5y = 0 - Mathematics

Advertisements
Advertisements

Question

Determine the order and degree (if defined) of the differential equation:

y' + 5y = 0

Answer in Brief

Solution

The given differential equation is:

y' + 5y = 0

The highest-order derivative present in the differential equation is y'.

Therefore, its order is one.

It is a polynomial equation in y'. The highest power raised to y' is 1. Hence, its degree is one.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise 9.1 [Page 382]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise 9.1 | Q 2 | Page 382

RELATED QUESTIONS

Determine the order and degree (if defined) of the differential equation:

`(d^4y)/(dx^4) + sin(y^("')) = 0`


The degree of the differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin ((dy)/(dx)) + 1 = 0` is ______.


For the differential equation given below, indicate its order and degree (if defined).

`((dy)/(dx))^3 -4(dy/dx)^2 + 7y = sin x`


\[\sqrt{1 - y^2} dx + \sqrt{1 - x^2} dx = 0\]

(y'')2 + (y')3 + sin y = 0


\[\frac{d^2 y}{d x^2} + 5x\left( \frac{dy}{dx} \right) - 6y = \log x\]

\[\frac{dy}{dx} + e^y = 0\]

\[e^\frac{dy}{dx} = x + 1 ; y\left( 0 \right) = 3\]

Write the order and degree of the differential equation
\[y = x\frac{dy}{dx} + a\sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]


Find the sum of the order and degree of the differential equation
\[y = x \left( \frac{dy}{dx} \right)^3 + \frac{d^2 y}{d x^2}\]


The order of the differential equation satisfying
\[\sqrt{1 - x^4} + \sqrt{1 - y^4} = a\left( x^2 - y^2 \right)\] is


Determine the order and degree (if defined) of the following differential equation:-

y" + (y')2 + 2y = 0


Determine the order and degree (if defined) of the following differential equation:-

y"' + y2 + ey' = 0


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + "dy"/"dx" + "x" = sqrt(1 + ("d"^3"y")/"dx"^3)`


Determine the order and degree of the following differential equation:

(y''')2 + 3y'' + 3xy' + 5y = 0


Determine the order and degree of the following differential equation:

`"x" + ("d"^2"y")/"dx"^2 = sqrt(1 + (("d"^2"y")/"dx"^2)^2)`


Determine the order and degree of the following differential equation:

`(("d"^3"y")/"dx"^3)^2 = root(5)(1 + "dy"/"dx")`


Determine the order and degree of the following differential equations.

`(y''')^2 + 2(y'')^2 + 6y' + 7y = 0`


Determine the order and degree of the following differential equations.

`((d^3y)/dx^3)^(1/6) = 9`


Choose the correct alternative.

The order and degree of `[ 1+ (dy/dx)^3]^(2/3) = 8 (d^3y)/dx^3` are respectively.


Fill in the blank:

The order of highest derivative occurring in the differential equation is called ___________ of the differential equation.


Order and degree of a differential equation are always positive integers.


Order and degree of differential equation are always ______ integers


State whether the following statement is True or False: 

Order and degree of differential equation are always positive integers.


 Order of highest derivative occurring in the differential equation is called the degree of the differential equation


State whether the following statement is True or False:  

The degree of a differential equation `"e"^(-("d"y)/("d"x)) = ("d"y)/("d"x) + "c"` is not defined


The degree of the differential equation `("d"^4"y")/"dx"^4 + sqrt(1 + ("dy"/"dx")^4)` = 0 is


The order of the differential equation of all circles whose radius is 4, is ______.


The order of the differential equation of all circles which lie in the first quadrant and touch both the axes is ______.


The degree of the differential equation `[1 + (("d"y)/("d"x))^2]^(3/2) = ("d"^2y)/("d"x^2)` is ______.


The order and degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^(1/4) + x^(1/5)` = 0, respectively, are ______.


The degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^3 + 6y^5` = 0 is ______.


The degree of differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin((dy)/(dx)) + 1` = 0 is:


Write the degree of the differential equation (y''')2 + 3(y") + 3xy' + 5y = 0


The order and degree of the differential equation `[1 + ((dy)/(dx))^3]^(2/3) = 8((d^3y)/(dx^3))` are respectively ______.


The order and degree of the differential eqµation whose general solution is given by `(d^2y)/(dx^2) + (dy/dx)^50` = In `((d^2y)/dx^2)` respectively, are ______.


The degree of the differential equation `((d^2y)/dx^2)^2 + (dy/dx)^3` = ax is 3.


Assertion: Degree of the differential equation: `a(dy/dx)^2 + bdx/dy = c`, is 3

Reason: If each term involving derivatives of a differential equation is a polynomial (or can be expressed as polynomial) then highest exponent of the highest order derivative is called the degree of the differential equation.

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×