English

Determine the order and degree (if defined) of the differential equation: d4ydx4+sin(y′)=0 - Mathematics

Advertisements
Advertisements

Question

Determine the order and degree (if defined) of the differential equation:

`(d^4y)/(dx^4) + sin(y^("')) = 0`

Answer in Brief

Solution

`(d^4y)/(dx^4) + sin(y^(′′′)) = 0`

`=> y^(′′′) + sin(y^(′′′)) = 0`

The highest order derivative present in the differential equation is `y^(′′′)` . Therefore, its order is four.

The given differential equation is not a polynomial equation in its derivatives. Hence, its degree is not defined.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise 9.1 [Page 382]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise 9.1 | Q 1 | Page 382

RELATED QUESTIONS

Determine the order and degree (if defined) of the differential equation:

y' + 5y = 0


Determine the order and degree (if defined) of the differential equation:

`(d^2y)/(dx^2)` = cos 3x + sin 3x


For the differential equation given below, indicate its order and degree (if defined).

`(d^4y)/dx^4 - sin ((d^3y)/(dx^3)) = 0`


For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.

xy = a ex + b e-x + x2 : `x (d^2y)/(dx^2) + 2 dy/dx - xy + x^2 - 2 = 0`


\[y = px + \sqrt{a^2 p^2 + b^2},\text{ where p} = \frac{dy}{dx}\]

\[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} + \frac{dy}{dx} + y \sin y = 0\]

Define degree of a differential equation.


Write the degree of the differential equation
\[a^2 \frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{1/4}\]


Write the order of the differential equation whose solution is y = a cos x + b sin x + c e−x.


What is the degree of the following differential equation?

\[5x \left( \frac{dy}{dx} \right)^2 - \frac{d^2 y}{d x^2} - 6y = \log x\]

Write the degree of the differential equation \[x^3 \left( \frac{d^2 y}{d x^2} \right)^2 + x \left( \frac{dy}{dx} \right)^4 = 0\]


Write the degree of the differential equation \[\frac{d^2 y}{d x^2} + 3 \left( \frac{dy}{dx} \right)^2 = x^2 \log\left( \frac{d^2 y}{d x^2} \right)\]


The degree of the differential equation \[\frac{d^2 y}{d x^2} + e^\frac{dy}{dx} = 0\]


Write the sum of the order and degree of the differential equation

\[\left( \frac{d^2 y}{{dx}^2} \right)^2 + \left( \frac{dy}{dx} \right)^3 + x^4 = 0 .\]


Determine the order and degree (if defined) of the following differential equation:-

y"' + 2y" + y' = 0


Write the order and degree of the differential equation `((d^4"y")/(d"x"^4))^2 =  [ "x" + ((d"y")/(d"x"))^2]^3`.


Find the order and the degree of the differential equation `x^2 (d^2y)/(dx^2) = { 1 + (dy/dx)^2}^4`


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + "x"("dy"/"dx")` + y = 2 sin x


Choose the correct option from the given alternatives:

The order and degree of the differential equation `sqrt(1 + ("dy"/"dx")^2) = (("d"^2"y")/"dx"^2)^(3/2)` are respectively.


Determine the order and degree of the following differential equation:

`("d"^4"y")/"dx"^4 + sin ("dy"/"dx") = 0`


Determine the order and degree of the following differential equations.

`(d^4y)/dx^4 + [1+(dy/dx)^2]^3 = 0`


Determine the order and degree of the following differential equations.

`dy/dx = 7 (d^2y)/dx^2`


Determine the order and degree of the following differential equations.

`((d^3y)/dx^3)^(1/6) = 9`


Fill in the blank:

The order of highest derivative occurring in the differential equation is called ___________ of the differential equation.


Fill in the blank:

The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called __________ of the differential equation.


Fill in the blank:

Order and degree of a differential equation are always __________ integers.


State whether the following is True or False:

The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called order of the differential equation.


Select and write the correct alternative from the given option for the question

The order and degree of `(("d"y)/("d"x))^3 - ("d"^3y)/("d"x^3) + y"e"^x` = 0 are respectively


Select and write the correct alternative from the given option for the question

The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively


State the degree of differential equation `"e"^((dy)/(dx)) + (dy)/(dx)` = x


Choose the correct alternative:

The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively


State whether the following statement is True or False: 

Order and degree of differential equation are always positive integers.


State whether the following statement is True or False: 

The degree of a differential equation is the power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any


The order of the differential equation of all circles of radius r, having centre on X-axis and passing through the origin is ______.


The degree of the differential equation `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` is ______.


Order of the differential equation representing the family of ellipses having centre at origin and foci on x-axis is two.


The degree of the differential equation `[1 + (("d"y)/("d"x))^2]^(3/2) = ("d"^2y)/("d"x^2)` is ______.


If `(a + bx)e^(y/x)` = x then prove that `x(d^2y)/(dx^2) = (a/(a + bx))^2`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×