English

Write the Order and Degree of the Differential Equation ( D 4 Y D X 4 ) 2 = X + ( D Y D X ) 2 − 3 - Mathematics

Advertisements
Advertisements

Question

Write the order and degree of the differential equation `((d^4"y")/(d"x"^4))^2 =  [ "x" + ((d"y")/(d"x"))^2]^3`.

Sum

Solution

Since, 
The given differential equation is

`((d^4"y")/(d"x"^4))^2 =  [ "x" + ((d"y")/(d"x"))^2]^3`

`((d^4"y")/(d"x"^4))^2 = "x"^3 + ((d"y")/(d"x"))^6 + 3"x"^2 ((d"y")/(d"x"))^2 + 3"x" ((d"y")/(d"x"))^4` 

The highest order derivative in the differential equation is `(d^4"y")/(d"x"^4)` ⇒ Order of the given differential equation is 4.
The highest power raised to `(d^4"y")/(d"x"^4)` is 2⇒ Degree of the given differential equation is 2.

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 65/3/1

RELATED QUESTIONS

Order and degree of the differential equation `[1+(dy/dx)^3]^(7/3)=7(d^2y)/(dx^2)` are respectively 

(A) 2, 3

(B) 3, 2

(C) 7, 2

(D) 3, 7


Determine the order and degree (if defined) of the differential equation:

y′ + y = ex


Determine the order and degree (if defined) of the differential equation:

y″ + (y′)2 + 2y = 0


\[\frac{d^2 y}{d x^2} = \left( \frac{dy}{dx} \right)^{2/3}\]

What is the degree of the following differential equation?

\[5x \left( \frac{dy}{dx} \right)^2 - \frac{d^2 y}{d x^2} - 6y = \log x\]

Write the degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 + \left( \frac{dy}{dx} \right)^2 = x\sin\left( \frac{dy}{dx} \right)\]


Write the order and degree of the differential equation
\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^\frac{1}{4} + x^\frac{1}{5} = 0\]


The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 - \left( \frac{dy}{dx} \right) = y^3\], is


The degree of the differential equation \[\left\{ 5 + \left( \frac{dy}{dx} \right)^2 \right\}^{5/3} = x^5 \left( \frac{d^2 y}{d x^2} \right)\], is


The order of the differential equation whose general solution is given by y = c1 cos (2x + c2) − (c3 + c4) ax + c5 + c6 sin (x − c7) is


Determine the order and degree (if defined) of the following differential equation:-

\[\left( \frac{ds}{dt} \right)^4 + 3s\frac{d^2 s}{d t^2} = 0\]


Determine the order and degree (if defined) of the following differential equation:-

y"' + 2y" + y' = 0


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + "x"("dy"/"dx")` + y = 2 sin x


Determine the order and degree of the following differential equations.

`(d^2x)/(dt^2)+((dx)/(dt))^2 + 8=0`


Choose the correct alternative.

The order and degree of `(dy/dx)^3 - (d^3y)/dx^3 + ye^x = 0` are respectively.


Choose the correct alternative.

The order and degree of `[ 1+ (dy/dx)^3]^(2/3) = 8 (d^3y)/dx^3` are respectively.


Select and write the correct alternative from the given option for the question

The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively


The power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any is called ______ of the differential equation


The degree of the differential equation `("d"^4"y")/"dx"^4 + sqrt(1 + ("dy"/"dx")^4)` = 0 is


The order and degree of the differential equation `[1 + ["dy"/"dx"]^3]^(7/3) = 7 (("d"^2"y")/"dx"^2)` are respectively.


The order and degree of the differential equation `[1 + 1/("dy"/"dx")^2]^(5/3) = 5 ("d"^2y)/"dx"^2` are respectively.


The degree of the differential equation `1/2 ("d"^3"y")/"dx"^3 = {1 + (("d"^2"y")/"dx"^2)}^(5/3)` is ______.


The order of the differential equation of all circles of given radius a is ______.


Determine the order and degree of the following differential equation:

`(d^2y)/(dx^2) + x((dy)/(dx)) + y` = 2 sin x


The degree and order of the differential equation `[1 + (dy/dx)^3]^(7/3) = 7((d^2y)/(dx^2))` respectively are ______.


Find the order and degree of the differential equation

`sqrt(1 + 1/(dy/dx)^2) = ((d^2y)/(dx^2))^(3/2)`


Find the order and degree of the differential equation `(d^2y)/(dx^2) = root(3)(1 - (dy/dx)^4`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×