Advertisements
Advertisements
प्रश्न
Write the order and degree of the differential equation `((d^4"y")/(d"x"^4))^2 = [ "x" + ((d"y")/(d"x"))^2]^3`.
उत्तर
Since,
The given differential equation is
`((d^4"y")/(d"x"^4))^2 = [ "x" + ((d"y")/(d"x"))^2]^3`
`((d^4"y")/(d"x"^4))^2 = "x"^3 + ((d"y")/(d"x"))^6 + 3"x"^2 ((d"y")/(d"x"))^2 + 3"x" ((d"y")/(d"x"))^4`
The highest order derivative in the differential equation is `(d^4"y")/(d"x"^4)` ⇒ Order of the given differential equation is 4.
The highest power raised to `(d^4"y")/(d"x"^4)` is 2⇒ Degree of the given differential equation is 2.
APPEARS IN
संबंधित प्रश्न
Determine the order and degree (if defined) of the differential equation:
`((ds)/(dt))^4 + 3s (d^2s)/(dt^2) = 0`
Determine the order and degree (if defined) of the differential equation:
`(d^2y)/(dx^2)` = cos 3x + sin 3x
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
xy = a ex + b e-x + x2 : `x (d^2y)/(dx^2) + 2 dy/dx - xy + x^2 - 2 = 0`
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
`y = xsin 3x : (d^2y)/(dx^2) + 9y - 6 cos 3x = 0`
Write the degree of the differential equation
\[a^2 \frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{1/4}\]
Write the order of the differential equation of all non-horizontal lines in a plane.
The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 - \left( \frac{dy}{dx} \right) = y^3\], is
Find the order and the degree of the differential equation `x^2 (d^2y)/(dx^2) = { 1 + (dy/dx)^2}^4`
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + "x"("dy"/"dx")` + y = 2 sin x
Determine the order and degree of the following differential equation:
`root(3)(1 +("dy"/"dx")^2) = ("d"^2"y")/"dx"^2`
Determine the order and degree of the following differential equation:
(y''')2 + 3y'' + 3xy' + 5y = 0
Determine the order and degree of the following differential equation:
`"x" + ("d"^2"y")/"dx"^2 = sqrt(1 + (("d"^2"y")/"dx"^2)^2)`
Choose the correct option from the given alternatives:
The order and degree of the differential equation `sqrt(1 + ("dy"/"dx")^2) = (("d"^2"y")/"dx"^2)^(3/2)` are respectively.
Determine the order and degree of the following differential equation:
`("d"^2"y")/"dx"^2 + 5 "dy"/"dx" + "y" = "x"^3`
Fill in the blank:
The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called __________ of the differential equation.
The order and degree of `((dy)/(dx))^3 - (d^3y)/(dx^3) + ye^x` = 0 are ______.
The third order differential equation is ______
The degree of the differential equation `1/2 ("d"^3"y")/"dx"^3 = {1 + (("d"^2"y")/"dx"^2)}^(5/3)` is ______.
The order of the differential equation of all circles of radius r, having centre on X-axis and passing through the origin is ______.
The order and degree of the differential equation `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` respectively, are ______.
Degree of the differential equation `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` is not defined.
y2 = (x + c)3 is the general solution of the differential equation ______.
Degree of the differential equation `sinx + cos(dy/dx)` = y2 is ______.
Find the order and degree of the differential equation
`sqrt(1 + 1/(dy/dx)^2) = ((d^2y)/(dx^2))^(3/2)`
Find the order and degree of the differential equation `(d^2y)/(dx^2) = root(3)(1 - (dy/dx)^4`
Assertion: Degree of the differential equation: `a(dy/dx)^2 + bdx/dy = c`, is 3
Reason: If each term involving derivatives of a differential equation is a polynomial (or can be expressed as polynomial) then highest exponent of the highest order derivative is called the degree of the differential equation.
Which of the following is correct?