हिंदी

For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation. y=xsin3x : d2ydx2+9y-6cos3x=0 - Mathematics

Advertisements
Advertisements

प्रश्न

For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.

`y = xsin 3x   :   (d^2y)/(dx^2) + 9y - 6 cos 3x = 0`

योग

उत्तर

Given function y = x sin 3x               .....(1)

On differentiating with respect to x,            .....(2)

`dy/dx = 3x cos 3x + 1 * sin 2x`

On differentiating again,

`(d^2y)/dx^2 = (3 cos 3x - 9x sin 3x) + 3 cos 3x`

= 6 cos 3x - 9x sin 3x                           ....(3)

= 6 cos 3x - 9x    

`=> (d^2y)/dx^2 + 9y - 6 cos 3x = 0`

= (6 cos 3x - 9x sin 3x) + 9 (x sin 3x) - 6 cos 3x = 0    ...[Using (1) & (3)]

Hence, (1) is a solution of `(d^2y)/(dx^2) + 9y - 6 cos 3x = 0`

Hence, the given function is a solution to the differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise 9.7 [पृष्ठ ४२०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise 9.7 | Q 2.3 | पृष्ठ ४२०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Order and degree of the differential equation `[1+(dy/dx)^3]^(7/3)=7(d^2y)/(dx^2)` are respectively 

(A) 2, 3

(B) 3, 2

(C) 7, 2

(D) 3, 7


Determine the order and degree (if defined) of the differential equation:

`((ds)/(dt))^4 + 3s  (d^2s)/(dt^2) = 0`


Determine the order and degree (if defined) of the differential equation:

y′ + y = ex


Determine the order and degree (if defined) of the differential equation:

y″ + 2y′ + sin y = 0


For the differential equation given below, indicate its order and degree (if defined).

`((dy)/(dx))^3 -4(dy/dx)^2 + 7y = sin x`


(y'')2 + (y')3 + sin y = 0


Write the degree of the differential equation \[\left( 1 + \frac{dy}{dx} \right)^3 = \left( \frac{d^2 y}{d x^2} \right)^2\]


Write the degree of the differential equation \[\frac{d^2 y}{d x^2} + 3 \left( \frac{dy}{dx} \right)^2 = x^2 \log\left( \frac{d^2 y}{d x^2} \right)\]


The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 - \left( \frac{dy}{dx} \right) = y^3\], is


The degree of the differential equation \[\left\{ 5 + \left( \frac{dy}{dx} \right)^2 \right\}^{5/3} = x^5 \left( \frac{d^2 y}{d x^2} \right)\], is


Determine the order and degree (if defined) of the following differential equation:-

y" + (y')2 + 2y = 0


Determine the order and degree (if defined) of the following differential equation:-

y"' + y2 + ey' = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = x2 + 2x + C            y' − 2x − 2 = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = cos x + C            y' + sin x = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = x sin x              `xy'=y+xsqrt(x^2-y^2)`


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + "dy"/"dx" + "x" = sqrt(1 + ("d"^3"y")/"dx"^3)`


Determine the order and degree of the following differential equation:

(y''')2 + 3y'' + 3xy' + 5y = 0


Determine the order and degree of the following differential equation:

`[1 + (dy/dx)^2]^(3/2) = 8(d^2y)/dx^2`


Determine the order and degree of the following differential equation:

`"dy"/"dx" = 3"y" + root(4)(1 + 5 ("dy"/"dx")^2)`


Determine the order and degree of the following differential equations.

`sqrt(1+1/(dy/dx)^2) = (dy/dx)^(3/2)`


Order and degree of differential equation`(("d"^3y)/("d"x^3))^(1/6)`= 9 is ______


Degree of the given differential equation

`(("d"^3"y")/"dx"^2)^2 = (1 + "dy"/"dx")^(1/3)` is


The differential equation `x((d^2y)/dx^2)^3 + ((d^3y)/dx^3)^2y = x^2` is of ______ 


The order of the differential equation of all circles which lie in the first quadrant and touch both the axes is ______.


The degree of the differential equation `1/2 ("d"^3"y")/"dx"^3 = {1 + (("d"^2"y")/"dx"^2)}^(5/3)` is ______.


The differential equation of the family of curves y = ex (A cos x + B sin x). Where A and B are arbitary constants is ______.


The order and degree of the differential equation `("d"^2"y")/"dx"^2 + (("d"^3"y")/"dx"^3) + x^(1/5) = 0` are respectively.


The order of the differential equation of all circles of given radius a is ______.


Order of the differential equation representing the family of parabolas y2 = 4ax is ______.


Order of the differential equation representing the family of ellipses having centre at origin and foci on x-axis is two.


The degree of differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin((dy)/(dx)) + 1` = 0 is:


The degree of the differential equation `dy/dx - x = (y - x dy/dx)^-4` is ______.


The order and degree of the differential eqµation whose general solution is given by `(d^2y)/(dx^2) + (dy/dx)^50` = In `((d^2y)/dx^2)` respectively, are ______.


Degree of the differential equation `sinx + cos(dy/dx)` = y2 is ______.


The order and the degree of the differential equation `(1 + 3 dy/dx)^2 = 4 (d^3y)/(dx^3)` respectively are ______.


Find the order and degree of the differential equation `(d^2y)/(dx^2) = root(3)(1 - (dy/dx)^4`


Assertion: Degree of the differential equation: `a(dy/dx)^2 + bdx/dy = c`, is 3

Reason: If each term involving derivatives of a differential equation is a polynomial (or can be expressed as polynomial) then highest exponent of the highest order derivative is called the degree of the differential equation.

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×