English

For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation. y=xsin3x : d2ydx2+9y-6cos3x=0 - Mathematics

Advertisements
Advertisements

Question

For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.

`y = xsin 3x   :   (d^2y)/(dx^2) + 9y - 6 cos 3x = 0`

Sum

Solution

Given function y = x sin 3x               .....(1)

On differentiating with respect to x,            .....(2)

`dy/dx = 3x cos 3x + 1 * sin 2x`

On differentiating again,

`(d^2y)/dx^2 = (3 cos 3x - 9x sin 3x) + 3 cos 3x`

= 6 cos 3x - 9x sin 3x                           ....(3)

= 6 cos 3x - 9x    

`=> (d^2y)/dx^2 + 9y - 6 cos 3x = 0`

= (6 cos 3x - 9x sin 3x) + 9 (x sin 3x) - 6 cos 3x = 0    ...[Using (1) & (3)]

Hence, (1) is a solution of `(d^2y)/(dx^2) + 9y - 6 cos 3x = 0`

Hence, the given function is a solution to the differential equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise 9.7 [Page 420]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise 9.7 | Q 2.3 | Page 420

RELATED QUESTIONS

Order and degree of the differential equation `[1+(dy/dx)^3]^(7/3)=7(d^2y)/(dx^2)` are respectively 

(A) 2, 3

(B) 3, 2

(C) 7, 2

(D) 3, 7


Determine the order and degree (if defined) of the differential equation:

`(d^2y)/(dx^2)^2 + cos(dy/dx) = 0`


\[\frac{d^3 y}{d x^3} + \left( \frac{d^2 y}{d x^2} \right)^3 + \frac{dy}{dx} + 4y = \sin x\]

\[\frac{d^2 y}{d x^2} = \left( \frac{dy}{dx} \right)^{2/3}\]

\[5\frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

\[\left( \frac{dy}{dx} \right)^3 - 4 \left( \frac{dy}{dx} \right)^2 + 7y = \sin x\]

Write the order and degree of the differential equation
\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^\frac{1}{4} + x^\frac{1}{5} = 0\]


Find the sum of the order and degree of the differential equation
\[y = x \left( \frac{dy}{dx} \right)^3 + \frac{d^2 y}{d x^2}\]


Write the sum of the order and degree of the differential equation

\[\left( \frac{d^2 y}{{dx}^2} \right)^2 + \left( \frac{dy}{dx} \right)^3 + x^4 = 0 .\]


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = x2 + 2x + C            y' − 2x − 2 = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(1+x^2)`                     `y'=(xy)/(1+x^2)`


Write the order and the degree of the following differential equation: `"x"^3 ((d^2"y")/(d"x"^2))^2 + "x" ((d"y")/(d"x"))^4 = 0`


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + "x"("dy"/"dx")` + y = 2 sin x


Determine the order and degree of the following differential equation:

`(dy)/(dx) = (2sin x + 3)/(dy/dx)`


Choose the correct alternative.

The order and degree of `[ 1+ (dy/dx)^3]^(2/3) = 8 (d^3y)/dx^3` are respectively.


Fill in the blank:

The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called __________ of the differential equation.


Fill in the blank:

Order and degree of a differential equation are always __________ integers.


Find the order and degree of the following differential equation:

`[ (d^3y)/dx^3 + x]^(3/2) = (d^2y)/dx^2`


Find the order and degree of the following differential equation:

`x+ dy/dx = 1 + (dy/dx)^2`


Select and write the correct alternative from the given option for the question

The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively


State whether the following statement is True or False: 

Order and degree of differential equation are always positive integers.


State whether the following statement is True or False: 

The degree of a differential equation is the power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any


The order and degree of the differential equation `[1 + 1/("dy"/"dx")^2]^(5/3) = 5 ("d"^2y)/"dx"^2` are respectively.


The order of the differential equation of all circles which lie in the first quadrant and touch both the axes is ______.


The degree of the differential equation `1/2 ("d"^3"y")/"dx"^3 = {1 + (("d"^2"y")/"dx"^2)}^(5/3)` is ______.


The degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^3 + 6y^5` = 0 is ______.


The order and degree of the differential equation `(("d"^3y)/("d"x^3))^2 - 3 ("d"^2y)/("d"x^2) + 2(("d"y)/("d"x))^4` = y4 are ______.


Write the sum of the order and the degree of the following differential equation:

`d/(dx) (dy/dx)` = 5


The degree of differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin((dy)/(dx)) + 1` = 0 is:


Write the degree of the differential equation (y''')2 + 3(y") + 3xy' + 5y = 0


y2 = (x + c)3 is the general solution of the differential equation ______.


The order and degree of the differential equation `sqrt(dy/dx) - 4 dy/dx - 7x` = 0 are ______.


Degree of the differential equation `sinx + cos(dy/dx)` = y2 is ______.


The sum of the order and the degree of the differential equation `d/dx[(dy/dx)^3]` is ______.


The degree of the differential equation `[1 + (dy/dx)^2]^3 = ((d^2y)/(dx^2))^2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×