English

The degree of the differential equation [1+(dydx)2]3=(d2ydx2)2 is ______. - Mathematics

Advertisements
Advertisements

Question

The degree of the differential equation `[1 + (dy/dx)^2]^3 = ((d^2y)/(dx^2))^2` is ______.

Options

  • 4

  • `3/2`

  • 2

  • Not defined

MCQ
Fill in the Blanks

Solution

The degree of the differential equation `[1 + (dy/dx)^2]^3 = ((d^2y)/(dx^2))^2` is 2.

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (March) Board Sample Paper

RELATED QUESTIONS

Write the degree of the differential equation `x^3((d^2y)/(dx^2))^2+x(dy/dx)^4=0`


For the differential equation given below, indicate its order and degree (if defined).

`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`


For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.

`x^2 = 2y^2 log y : (x^2  + y^2) dy/dx - xy = 0`


\[2\frac{d^2 y}{d x^2} + 3\sqrt{1 - \left( \frac{dy}{dx} \right)^2 - y} = 0\]

\[5\frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

(y'')2 + (y')3 + sin y = 0


\[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} + \frac{dy}{dx} + y \sin y = 0\]

\[\frac{dy}{dx} + e^y = 0\]

\[e^\frac{dy}{dx} = x + 1 ; y\left( 0 \right) = 3\]

Write the order of the differential equation
\[1 + \left( \frac{dy}{dx} \right)^2 = 7 \left( \frac{d^2 y}{d x^2} \right)^3\]


Write the degree of the differential equation x \[\left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + x^3 = 0\]

 


Write the degree of the differential equation \[\frac{d^2 y}{d x^2} + 3 \left( \frac{dy}{dx} \right)^2 = x^2 \log\left( \frac{d^2 y}{d x^2} \right)\]


Determine the order and degree (if defined) of the following differential equation:-

y" + 2y' + sin y = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = x sin x              `xy'=y+xsqrt(x^2-y^2)`


Write the order and degree of the differential equation `((d^4"y")/(d"x"^4))^2 =  [ "x" + ((d"y")/(d"x"))^2]^3`.


Write the order and the degree of the following differential equation: `"x"^3 ((d^2"y")/(d"x"^2))^2 + "x" ((d"y")/(d"x"))^4 = 0`


Choose the correct option from the given alternatives:

The order and degree of the differential equation `sqrt(1 + ("dy"/"dx")^2) = (("d"^2"y")/"dx"^2)^(3/2)` are respectively.


Determine the order and degree of the following differential equations.

`((d^2y)/(dx^2))^2 + ((dy)/(dx))^2 =a^x `


Determine the order and degree of the following differential equations.

`dy/dx = 7 (d^2y)/dx^2`


The degree of the differential equation `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` is ______.


The order and degree of the differential equation `[1 + ((dy)/(dx))^2] = (d^2y)/(dx^2)` are ______.


The degree of the differential equation `("d"^2"y")/("dx"^2) + 3("dy"/"dx")^2 = "x"^2 (("d"^2"y")/("dx"^2))^2` is:


The degree of differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin((dy)/(dx)) + 1` = 0 is:


The order and degree of the differential equation `[1 + ((dy)/(dx))^3]^(2/3) = 8((d^3y)/(dx^3))` are respectively ______.


If m and n, respectively, are the order and the degree of the differential equation `d/(dx) [((dy)/(dx))]^4` = 0, then m + n = ______.


Find the general solution of the following differential equation:

`(dy)/(dx) = e^(x-y) + x^2e^-y`


Degree of the differential equation `sinx + cos(dy/dx)` = y2 is ______.


Find the order and degree of the differential equation `(d^2y)/(dx^2) = root(3)(1 - (dy/dx)^4`


Find the order and degree of the differential equation `(1 + 3 dy/dx)^(2/3) = 4((d^3y)/(dx^3))`.


Assertion: Degree of the differential equation: `a(dy/dx)^2 + bdx/dy = c`, is 3

Reason: If each term involving derivatives of a differential equation is a polynomial (or can be expressed as polynomial) then highest exponent of the highest order derivative is called the degree of the differential equation.

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×